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Preface

Quantum Paradoxes is a series of studies in quantum theory. Each chapter begins with a
paradox motivating the study, in the rest of the chapter, of a fundamental aspect of the theory.
We hope that this style in physics – progress through paradox – will rub off on readers. The
studies, taken together, set out a new interpretation of quantum theory.

Elements of this interpretation include topological phases (the Aharonov-Bohm effect and
its generalizations), “modular” variables, nonlocal measurements and relativistic causality,
time-symmetric boundary conditions, measurement of the quantum wave, “weak” measure-
ments and “weak” values, and new axioms for quantum theory. A treatment of “quantum
measurements”, starting in Chap. 7, plays an important role in the book. Indeed, measurement
is so important that many of the works cited in the book can be found in the anthology Quantum
Theory and Measurement, edited by J. A. Wheeler and W. H. Zurek (Princeton: Princeton U.
Press), 1983; these citations include a note “reprinted in WZ” with page numbers.

For whom is this book written? It is designed for physics students, physicists and philoso-
phers of science with an interest in fundamental aspects of quantum theory. The first two chap-
ters of Quantum Paradoxes do not require prior knowledge of quantum theory, and Chaps. 3–4
introduce basic notions of states, observables and quantum phases, so students can use the
book even during a first course in quantum mechanics. It is not, however, a substitute for such
a course.

Each chapter ends with a problem set. Problems marked with an asterisk (*) are, in general,
less straightforward than others.

It is a pleasure to thank those who have helped us write this book. We are indebted to col-
leagues (including students) who read parts of the book at one stage or another, most especially
Philip Pearle and Fritz Rohrlich, and to Elisabeth Warschawski for much encouragement and
technical support. We thank Shula Volk for opening her ceramics studio to us at odd hours
of the day and night, as reported in Sect. 2.1. We also acknowledge support from the Giladi
Program of the Israeli Ministry of Absorption and from the Ticho Fund.

Yakir Aharonov
Daniel Rohrlich
December 2004
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1 The Uses of Paradox

On November 9, 1919, The New York Times reported solar eclipse observations confirming a
prediction of Einstein’s general theory of relativity: rays of starlight bend near the sun. It also
reported that when Einstein sent his theory to the publishers, “he warned them that there were
not more than twelve persons in the world who would understand it . . . .” Was there a time
when only “twelve wise men” understood the general theory of relativity? “I do not believe
there ever was such a time,” commented Feynman. “There might have been a time when only
one man did, because he was the only guy who caught on, before he wrote his paper. But after
people read the paper a lot of people understood the theory of relativity in some way or other,
certainly more than twelve. On the other hand, I think I can safely say that nobody understands
quantum mechanics.” [1]

What is the problem with quantum mechanics? It is a spectacularly successful theory.
It governs the structure of all matter. Measurements of Planck’s constant are accurate to
better than a part in a million, and still more accurate measurements confirm predictions of
quantum electrodynamics. But along with the spectacular successes of quantum mechanics
come spectacular difficulties of interpretation. “Do not keep saying to yourself, if you can
possibly avoid it, ‘But how can it be like that?”’ Feynman continued, “because you will get
‘down the drain’, into a blind alley from which nobody has yet escaped. Nobody knows how
it can be like that.”

We can stop asking ourselves, “But how can it be like that?” We may indeed despair of
asking a question that Einstein, Schrödinger and Feynman could not answer. But we cannot
stop using quantum mechanics. So the problem is that everybody uses quantum mechanics
and nobody knows how it can be like that. Our relationship with quantum mechanics recalls a
Woody Allen joke:

This guy goes to a psychiatrist and says, “Doc, my brother’s crazy – he thinks he’s a
chicken! And, uh, the doctor says, “Well, why don’t you turn him in?” And the guy
says, “I would, but I need the eggs!”

We say, “Quantum mechanics is crazy – but we need the eggs!”
Such a relationship with quantum mechanics is paradoxical. In this book, we will not be

satisfied to have a paradoxical relationship with quantum mechanics. We will not stop asking,
“How can it be like that?” But we will use paradox repeatedly in order to understand quantum
mechanics better.
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2 1 The Uses of Paradox

1.1 Paradox in Physics

We will use paradox to probe quantum mechanics. Can paradox be useful? The history of
physics shows how useful. As Wheeler [2] put it, “No progress without a paradox!” In this
section, we define and classify physics paradoxes; the next sections present examples of each
class.

A paradox is an argument that starts with apparently acceptable assumptions and leads by
apparently valid deductions to an apparent contradiction. Since logic admits no contradictions,
either the apparently acceptable assumptions are not acceptable, or the apparently valid deduc-
tions are not valid, or the apparent contradiction is not a contradiction. A paradox is useful
because it can show that something is wrong even when everything appears to be right. It does
not show what is wrong. But something is wrong – something we thought we understood –
and a paradox moves us to reexamine the argument until we find out what is wrong.

We can classify physics paradoxes according to what is wrong. There are three broad
classes: “errors”, “gaps” and “contradictions”.

Many paradoxes arise from errors. An error in logic or in our understanding of the laws
of physics easily leads us to an apparent contradiction. Our error may be simple or it may
be subtle, but it is just an error; once we recognize it, we have resolved the paradox. What
distinguishes the first class is that these paradoxes do not arise from any flaw in the theory. In
the special theory of relativity, for example, erroneous assumptions about simultaneity lead us
to paradox. (See Sect. 1.2.) Resolving the paradox, we improve our understanding of special
relativity, but we do not improve the theory. Another example of a paradox arising from an error
is Einstein’s clock-in-the-box paradox. (See Sect. 2.4.) Einstein made an error and arrived at
an apparent contradiction in quantum theory. The resolution of the paradox came as a surprise,
but it did not show quantum theory to be flawed in any way.

Other paradoxes do show a physical theory to be flawed. A gap in physical theory is a flaw.
As an example of a gap, consider Wheeler’s paradox of black hole entropy. According to the
general theory of relativity, nothing can escape a black hole. We, as outside observers, can
measure the electric and gravitational fields of a black hole, and hence its charge and mass (and
angular momentum); but we have no other access to a black hole. So a black hole at rest has
only three properties: charge, mass and angular momentum. Such a simple physical system
can hardly have much entropy. Now suppose a complicated physical system, containing a
lot of entropy, falls into a black hole. What happens to the entropy? Apparently it vanishes.
But vanishing entropy violates the second law of thermodynamics. Wheeler told his student
Bekenstein about this paradox:

The idea that a black hole had no entropy troubled me, but I didn’t see any escape
from this conclusion. In a joking mood one day in my office, I remarked to Jacob
Bekenstein that I always feel like a criminal when I put a cup of hot tea next to a
glass of iced tea and then let the two come to a common temperature, conserving the
world’s energy but increasing the world’s entropy. My crime, I said to Jacob, echoes
down to the end of time, for there is no way to erase or undo it. But let a black hole
swim by and let me drop the hot tea and the cold tea into it. Then is not all evidence
of my crime erased forever? This remark was all that Jacob needed [3].



1.2 Errors 3

Bekenstein [4] proposed that a black hole has entropy proportional to the square of its mass.
If any physical system falls into a black hole, the mass of the black hole increases – and hence
the entropy. He demonstrated that the increase in entropy is at least as great as the entropy of
the infalling system, thus corroborating the second law and resolving Wheeler’s paradox.

Wheeler’s paradox indicated a flaw – but not a fatal flaw – in general relativity and ther-
modynamics. The resolution of the paradox did not invalidate either theory. The apparent
contradiction between the theories arose from a gap in thermodynamics – we didn’t know how
to extend the concept of entropy to black holes – and Bekenstein’s proposal filled the concep-
tual gap. Another paradox in the second class came, in turn, from Bekenstein’s proposal: if
thermodynamics extends to black holes, then black holes must emit as well as absorb heat. But
nothing can escape a black hole! This paradox, too, arose from a conceptual gap, as Hawking
discovered: one consequence of the uncertainty principle is that black holes radiate [5]. Many
such paradoxes appear in this book.

A contradiction in physical theory is a fatal flaw. Paradoxes in the third class are associated
with revolutions in physics, because they indicate that the physical theory behind the paradox
is wrong. Bohr faced such a paradox in 1911. In that year, Rutherford reported experiments
on neutral atoms, showing that the positive charges in atoms – but not the negative charges
(electrons) – are concentrated in nuclei. According to classical theory, such atoms should be
unstable: like all accelerating charges, the electrons should radiate energy, and fall into the
nuclei. Matter should collapse in a split second. So why is matter stable? Bohr realized that
this paradox had no resolution in classical physics. Only a new physical theory – quantum
theory – could resolve it. The only resolution was a revolution.

The paradox arose for Bohr as a contradiction between physical theory and experiment.
Especially useful are paradoxes that arise as contradictions within physical theory. Such a
paradox can show that a physical theory is wrong even when no experiment contradicts it. The
paradox then starts us searching for a new theory. (See Sects. 1.4 and 2.2.)

1.2 Errors

Every student of special relativity encounters the Twin Paradox [6]. Here is a Triplet Paradox.
Dumpy, Grumpy and Jump – identical triplets wearing synchronized wristwatches – once lived
together happily at home. But Grumpy got mad at Dumpy and decided to move to another
city. When he arrived, his watch was still synchronized with his brothers’ watches, because he
travelled very slowly compared to the speed of light. (In this paradox we set the speed of light
to 1000 m/s.)

A month later, Jump decided to visit Grumpy. Dumpy accompanied Jump to the train
station, and Jump took a seat in the train. Then the train accelerated, within a second, to 100
m/s. At the end of this second, Jump’s cabin passed Dumpy on the platform. Jump and Dumpy
glanced at each other through a cabin window and noticed that their watches still showed the
same time (to within a second). Hence Jump did not age appreciably during the acceleration.
For the rest of the trip, the train’s speed and direction were constant. When it arrived, it stopped
within a second.

Dumpy and Grumpy expected that Jump would be slightly younger than them when he
arrived, and that his watch would lag behind their watches, for Jump had been moving fast
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relative to them. But Jump expected the opposite: Dumpy and Grumpy would be slightly
younger, and their watches would lag behind his. He told himself, “After one second of
acceleration, Dumpy’s watch and mine showed the same time (to within a second); and Dumpy’s
and Grumpy’s watches were still synchronized. Afterwards, the inertial reference frame of
Dumpy and Grumpy moved fast relative to mine; so time passed more slowly for them, and
their watches now lag behind mine.” When he arrived, he discovered that his watch lagged
Grumpy’s by about half a minute! On the one hand, Jump’s expectation should be just as
correct as that of his brothers; there can be no preferred frame in special relativity. On the other
hand, Jump and his brothers cannot all be correct. So special relativity contradicts itself!

The Triplet Paradox belongs to the class of errors in that it does not arise from any flaw or
misconception in the special theory of relativity. It arises, rather, from incorrect intuition. We
can often use paradoxes in this class to improve our intuition.

1.3 Gaps

In 1856, Clausius stated the second law of thermodynamics as follows: heat cannot flow from a
colder body to a hotter body without an accompanying process (i.e. work). Clausius regarded
the second law as exact, and tried to derive it from the laws of mechanics. In 1871 he published
a paper [7] in which he offered a mechanical explanation of the second law. He did not know
that Boltzmann had published much the same explanation five years earlier [8]. Boltzmann
(who, like Clausius, regarded the second law as exact) was quick to claim priority [9]. Yet
Clausius did not wholly concede [10]. Maxwell was amused. “But it is rare sport to see those
learned Germans contending for the priority of the discovery that the 2nd law of θ∆cs is the
Hamiltonische Princip . . . .” he wrote. “The Hamiltonische Princip, the while, soars along in
a region unvexed by statistical considerations . . . .” [11]. Boltzmann and Clausius were both
wrong. The second law has no mechanical explanation; it is statistical.

What made Maxwell so sure that the second law is statistical? In 1859 he had calculated
that the distribution of molecular speeds in any gas, hot or cold, would range from zero to
infinity. (Molecules were still an untested hypothesis at the time.) In 1867 he had considered
the following thought experiment. Gas fills a sealed, insulated box, divided by a diaphragm.
The gas is hot on one side of the diaphragm and cold on the other side; yet there are fast
molecules in the cold gas and slow molecules in the hot gas. “Now conceive a finite being who
knows the paths and velocities of all the molecules by simple inspection but who can do no
work except open and close a hole in the diaphragm by means of a slide without mass.” The
being opens and closes the hole in such a way that fast molecules in the cold gas enter the hot
gas and slow molecules in the hot gas enter the cold gas. Energy gradually flows from the cold
gas to the hot gas. After many molecules have crossed through the hole, “the hot system has
got hotter and the cold colder and yet no work has been done, only the intelligence of a very
observant and neat-fingered being has been employed” [12]. The “neat-fingered being” soon
had a name: “Maxwell’s demon”.

Maxwell’s demon violates the second law of thermodynamics, as formulated by Clausius:
it does no work, yet it causes heat to flow from a cold gas to a hot gas. It does not, however,
violate the laws of mechanics. Hence the second law cannot be a mechanical law. Maxwell’s
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Figure 1.1: Two opposite “arrows of space”. [With
thanks to Stuart M. Hutchison and Princeton Tiger
Magazine.]

thought experiment was a paradox for Clausius’s formulation; it does not disprove the second
law, but it shows that the second law can only be a statistical law.

Another formulation of the second law states that the entropy of a closed system always
tends to increase to thermal equilibrium. But this formulation, too, leads to a paradox. It
assumes an arrow of time, relative to which entropy tends to increase. But what if there is
no arrow of time? What if the “arrow of time” is no more intrinsic than the “arrow of space”
defined by gravity? (See Fig. 1.1.) Suppose that two sealed, insulated boxes are filled with
gas, e.g. helium in one box and neon in the other, and at time t = 0, neither gas is at thermal
equilibrium. Now on the one hand, if the boxes are perfectly insulated, they could contain two
opposite arrows of time. Assume that the gases have contrary evolutions: the entropy of the
neon increases in time while the entropy of the helium decreases in (the same) time. Such an
assumption is plausible since the laws of mechanics are invariant under time reversal and the
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Figure 1.2: Maxwell’s demon as a trapdoor.

boxes do not interact. On the other hand, suppose the boxes do interact, with an interaction
that is independent of time; assume that the position and momentum of each atom at t = 0
is the same as before. According to the second law, the combined entropy of the two gases
always tends to increase; that is, any perturbation of the helium atoms, however small, will
destroy the precise coordination of their positions and momenta that allows their entropy to
decrease. So in the evolution of the two gases after t = 0, their total entropy increases. But the
same reasoning applies in reverse to the evolution of the gases before t = 0: their total entropy
must decrease until t = 0. Extrapolation forwards from t = 0 implies that the neon (with its
increasing entropy) overwhelms the helium; extrapolation backwards from t = 0 implies that
the helium overwhelms the neon. This paradox shows that the second law contains no arrow
of time. (See also Chap. 10.)

The second law is almost exact, i.e. the probability of a significant violation is very small.
Maxwell’s demon can violate the second law, yet the probability of a significant violation
is very small. Still, after Maxwell, the demon turned up in new paradoxes. The demon kept
turning up, because it is easier to imagine a demon that can violate the second law significantly,
than to prove that it can’t. For example, in Fig. 1.2 the demon is a trapdoor that apparently
allows only fast molecules of the cold gas to enter the hot gas. In 1914, Smoluchowski
showed that this demon fails to violate the second law significantly because the trapdoor
itself thermalizes, eventually opening and closing in random fluctuations [13]. More recent
paradoxes allow Maxwell’s demon to measure and compute. Their resolution involves an
application of information theory to thermodynamics [14].

All the paradoxes in this section belong to the class of gaps; they show up flaws or gaps in
how we understand the second law, but do not invalidate it. The resolutions of these paradoxes
correct our formulation of the second law and extend the concepts we use to apply it, but do
not contradict the formalism of thermodynamics.
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1.4 Contradictions

Maxwell’s equations imply that a changing electromagnetic field in empty space propagates
as a wave with constant speed c. On the face of it, this implication contradicts Newton’s
mechanics. According to Newton, if we run after a light wave, its speed (relative to us)
decreases. Velocities add as vectors: if the velocity of a light ray with respect to Alice is vA
and the (nonzero) velocity of Alice with respect to Bob is vAB , then the velocity of the ray
with respect to Bob is vA + vAB . The ray cannot have the same speed for Alice and for Bob.
What, then, corresponds to c? Physicists of Maxwell’s time assumed that electromagnetic
waves propagate through a medium, the “aether”, and what corresponds to c is the speed of
the wave relative to the aether.

At first, the aether was a plausible assumption. Even before Maxwell, physicists assumed
that light propagates through an aether. Every wave known to them, from ripples in water
to sound in air, propagated through some medium. Fresnel showed in 1818 that an aether
at absolute rest, unaffected by the earth’s motion through it, would be consistent with the
“aberration effect”, a seasonal shift in the apparent positions of stars in the sky. Over the rest
of nineteenth century, however, the aether became less and less plausible. In 1887, Michelson
and Morley measured the speed of light parallel and perpendicular to the earth’s motion, and
found no difference.1 Hence the aether and the earth must move together. Or else the earth is
at absolute rest – Copernicus was wrong after all!

Aether was a paradox. But since an aether at absolute rest made sense of c (and defined
the “absolute space” that Newton had postulated), most physicists chose tacitly to live with it.
They then had to explain the contradictory experiments.

For Einstein, the paradox was different. He concluded early on (even without the Michel-
son–Morley experiment) that there is no aether. He was then left with the contradiction between
Newton’s mechanics and electromagnetism. At age 16, Einstein formulated the paradox as
follows:

If I pursue a beam of light with the velocity c (velocity of light in a vacuum),
I should observe such a beam of light as an electromagnetic field at rest though
spatially oscillating. There seems to be no such thing, however, neither on the basis
of experience nor according to Maxwell’s equations. From the very beginning it
appeared to me intuitively clear that, judged from the standpoint of such an observer,
everything would have to happen according to the same laws as for an observer who,
relative to the earth, was at rest. For how should the first observer know, or be able
to determine, that he is in a state of fast uniform motion? [15]

Newton proved that his laws of mechanics are the same for all observers in uniform (rectilinear)
motion; and Maxwell [16] realized that – apart from the aether – electromagnetism is the same
for all observers in uniform motion. If there is no aether, then the laws of mechanics and
electromagnetism must be the same for all observers in uniform motion. The paradox was that
in Newton’s mechanics, which relates such observers by Galilean transformations, the speed of
light is not a constant; in Maxwell’s electromagnetism, which relates such observers by Lorentz

1To show that the basement laboratory of Michelson and Morley did not trap aether, Morley and Miller later
repeated the measurements on a hilltop.
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transformations, the speed of light is a constant, as it is in experiment. Years later, Einstein
resolved the paradox by modifying Newton’s mechanics so that Lorentz transformations, rather
than Galilean transformations, relate observers in uniform motion.

Indeed, paradox can be useful but, as this example shows, the paradox has to be the right
paradox. Where other physicists saw a contradiction between physical theory and experiment,
Einstein (and to an extent Poincaré) saw a contradiction within physical theory. What is striking
in this example is how ready Einstein was to discard the aether assumption when it had become
implausible (but still accepted by all other physicists) and to face a fundamental contradiction
in physical theory. He was thus able to identify the right paradox behind the wrong paradox,
and later to resolve it.

1.5 Overview of the Book

In this book we have two goals. Our primary goal is a deeper understanding of all funda-
mental aspects of quantum mechanics. The first chapters do not assume prior knowledge
of quantum mechanics. Chapter 2 discusses uncertainty and consistency in quantum theory,
without the formalism, and Chap. 3 introduces the notion of a quantum state, while discussing
the completeness of quantum theory. Chapter 4 introduces the quantum phase and probes its
unique role in the theory with the help of Schrödinger’s equation. Chapters 5 and 6 apply
the phase in unconventional ways and raise unconventional questions about quantum mechan-
ics. Chapters 7–11 present a theory of quantum measurements, a powerful tool for probing
quantum mechanics. Chapters 12–13 explore connections among the Feynman path integral,
Berry’s phase and the Aharonov–Bohm and Aharonov–Casher effects. Quantum mechan-
ics is nonrelativistic throughout Chaps. 1–13, but Chaps. 14–17 discuss relativistic quantum
measurements, measurements of the quantum wave, and “weak” measurements within a new
formalism adapted to relativity. Chapter 18 proposes simple physical axioms for quantum
theory.

Our secondary goal is to encourage physicists to use paradoxes creatively, both in teaching
and in research. We use paradoxes all through the book. Each chapter (except this one) begins
with a paradox that motivates the rest of the chapter. Try to resolve the paradoxes as you read!
Chapter 2 begins with a paradox from the class of contradictions; Chapter 10 begins with a
paradox from the class of errors. Chapters 3–8 and Chaps. 11–18 all begin with paradoxes
from the class of gaps; and it is an open question to which class the paradox in Chap. 9 belongs.

Problems

1.1 If Wheeler’s paradox of Sect. 1.1 had preceded the discovery of quantum mechanics, to
which class of paradoxes would it belong?

1.2 (a) Resolve the Triplet Paradox of Sect. 1.2. What was Jump’s error?
(b) About how long did Jump’s train ride last?
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2 How to Weigh a Quantum

Now we start to use paradoxes to investigate quantum theory and its mathematical formalism,
quantum mechanics. We need the mathematical formalism, but we do not need it yet. We first
take up the question: Is quantum theory consistent? From 1927 to 1930, Bohr and Einstein
debated this question [1]. Both were familiar with the formalism, yet they hardly referred
to it. They did not need to. With thought experiments, Einstein would argue that quantum
theory is inconsistent; and Bohr would refute Einstein’s arguments, one by one. After these
refutations, Einstein conceded that quantum theory is consistent. So we can gain insight into
quantum theory without the mathematical formalism. This chapter takes us to the climax of
the Bohr-Einstein debate.

2.1 Why does the Color of the Light Change?

Let’s visit a potter’s studio. In the studio we see boxes of clay, jars of powdered glaze, spoons,
brushes and rolling pins, and a potter’s wheel; but what stands out is the kiln, sitting on metal
posts, with its thick ceramic walls covered in metal. The huge, hot kiln dominates the studio.
We peep into the hot kiln through a peephole in the door of the kiln. What do we see?

As the kiln’s temperature reaches 1200 ◦C, the potter turns off the heating element. We then
see the glow of matter heated to this temperature. The temperature of the kiln drops slowly,
despite the peephole – roughly a degree per minute. So, to a good approximation, the kiln
remains at thermal equilibrium. At 1200 ◦C (1473 K), the light we see through the peephole
is orange mixed with yellow, and so bright it hurts the eyes. Almost everything in the kiln is
the same color, though objects close to the peephole look darker than the background. In a
few hours, the temperature of the kiln drops to 1000 ◦C (1273 K); the light is orange and less
bright than before. We can see the outlines of some objects in the kiln. In a few more hours
the temperature drops to 800 ◦C (1073 K) and the light is less intense; the color of the light
is a mixture of orange and red. When, a few hours later, the temperature falls below 600 ◦C
(873 K), we see only a dull red glow.

The correlation between temperature and the color of light is familiar and we take it for
granted. We use such expressions as “red hot” and “white hot”. A potter can judge the
temperature of a kiln by the color of its glow. All the same, the correlation is mysterious. We
understand why the intensity of the light changes: light has energy and the energy of the kiln
decreases with the decreasing temperature. But why does the color of the light change?

Let us discuss in more detail how it changes. The electromagnetic radiation from a kiln is
a mixture of light frequencies and other frequencies. The total energy in the radiation depends
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on the size of the kiln, but the density of energy in the radiation does not; it depends only on
the temperature of the kiln. Let u(ν, T ) denote the density of energy in radiation of frequency
ν coming from a kiln at absolute temperature T . That is, for small dν, the density of energy
in radiation with frequencies between ν and ν + dν is u(ν, T )dν. In 1860, Kirchhoff proved
that u(ν, T ) is the same for any black body in thermal equilibrium at temperature T . (By
definition, a black body does not reflect radiation; but it emits radiation, so, despite the name,
black bodies can have color. A kiln emits black-body radiation.) But Kirchhoff did not have
sufficient data to determine u(ν, T ). In 1896 Wien proposed a law to fit the data that had
gradually accumulated:

u(ν, T ) = bν3e−aν/T ,

where a and b are empirical constants. Then in 1900, when new data contradicted Wien’s law,
Planck proposed

u(ν, T ) =
8πhν3

c3
1

ehν/kT − 1
, (2.1)

where k is Boltzmann’s constant, c is the speed of light, and h is Planck’s constant. (Planck’s
value for his constant was h = 6.55 × 10−27 erg sec; as of 2004, the accepted value is
h = [6.6260693 ± 0.0000011] × 10−27 erg sec. We note � ≡ h/2π ≈ 1.054572 × 10−27 erg
sec.) Both Wien’s law and Planck’s law imply that the color of the light from a black body
changes with its temperature, because the shape of u(ν, T ) changes with T . And indeed the
color changes, not only at temperatures that a kiln can reach, but also at higher temperatures.
(See Fig. 2.1(a).)

We have defined the energy density u(ν, T ) as a function of the frequency of radiation.
We can just as well define energy density as a function of the wavelength λ of radiation. For
small λ, let uλ(λ, T )dλ be the density of energy in radiation with wavelengths between λ and
λ+ dλ. For any two wavelengths λ1 = c/ν1 and λ2 = c/ν2, we must have

∫ ν2

ν1

u(ν, T )dν =
∫ λ1

λ2

uλ(λ, T )dλ ,

so Eq. (2.1) implies

uλ(λ, T ) =
8πhc
λ5

1
ehc/λkT − 1

.

Figure 2.1(b) shows that the light from a kiln at 1473 K is mainly red, orange, yellow and
green, mixing to a yellowish orange; at 1273 K the light is mainly red, orange and yellow; at
1073 K the light is a mixture of red and orange; and at 873 K the light is dark red. (See also
Prob. 2.1.) But why does the color of the light change?

Can we derive u(ν, T )? Boltzmann and Gibbs had already invented statistical mechanics
when Planck proposed his law. A principle of statistical mechanics, the equipartition theorem,
states that the average kinetic energy of a system with n degrees of freedom at temperature
T is nkT/2. Between 1900 and 1905, Rayleigh, Einstein and Jeans applied the equipartition
theorem to Maxwell’s electromagnetism to obtain

u(ν, T ) =
8πν2

c3
kT . (2.2)
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Figure 2.1: (a) Color of blackbody radiation as a function of temperature T . (b) Planck blackbody
distribution uλ(λ, T ) for temperatures 1473 K, 1273 K, 1073 K and 873 K, showing color of light as a
function of wavelength λ. [We thank Dr. Dan Bruton for the two color spectra in this figure. Because
of differences between light emission (from a computer screen) and reflection (from a printed page), the
colors here differ slightly from those in his web site www.physics.sfasu.edu/astro/color.html.]

Each frequency ν of electromagnetic radiation corresponds to two degrees of freedom (two
independent polarizations) and the density of frequencies is 4πν2/c3. (See Prob. 2.2.) So
Eq. (2.2) is simply kT times1 the density of degrees of freedom, 8πν2/c3. Note that Planck’s
law (unlike Wien’s law) approaches Eq. (2.2) for ν → 0, but both laws contradict Eq. (2.2) for
large ν.

Equation (2.2), in which T appears as an overall factor, implies that only the intensity of
the light from a kiln changes with temperature, not the color. But Eq. (2.2) is wrong: if we
integrate Eq. (2.2) to obtain the overall energy U(T ) in the radiation field,

U(T ) =
∫ ∞

0
u(ν, T )dν ,

1The factor kT includes the average of both kinetic and potential energy. These are equal for electromagnetic
radiation as they are for harmonic oscillators.



14 2 How to Weigh a Quantum

we find that the integral diverges. Since statistical mechanics and electromagnetism together
imply this divergence, statistical mechanics and electromagnetism together contain a contra-
diction. We must modify one or both of these two theories to make them compatible.

So why does the color of the light change? We can guess that it changes to avoid the
divergence. The integral of Eq. (2.1) does not diverge. And Eq. (2.1) – Planck’s law – implies
that the color of the light changes with temperature. (See Prob. 2.3.)

2.2 Quanta

Planck’s own derivation of Eq. (2.1) was “an act of desperation . . . I had to obtain a positive
result, under any circumstance and at whatever cost”, as he put it [2]. Oddly, Planck was not
aware of Eq. (2.2); but he was aware that he could not derive Eq. (2.1) in any reasonable way. To
derive his law, he assumed that matter is composed of harmonic oscillators that exchange energy
with the electromagnetic field. This assumption was reasonable enough. He also assumed that
a harmonic oscillator of frequency ν could not exchange energy in arbitrary amounts, but only
in quanta of energy hν. This assumption was completely unreasonable. According to classical
theory, h should vanish; and as h vanishes, Planck’s law reduces to Eq. (2.2).

Five years later, Einstein extended Planck’s assumption. He assumed that electromagnetic
radiation itself consists of quanta; radiation of frequency ν consists of quanta of energyE with

E = hν . (2.3)

Einstein applied Eq. (2.3) to the photoelectric effect. Metals exposed to ultraviolet light emit
electrons. The energy of the emitted electrons depends on the frequency, but not on the in-
tensity, of the light. Einstein predicted a linear relation between the light frequency and the
energy of the electrons, with a slope, independent of the type of metal, equal to Planck’s con-
stant. Experiments verified these predictions by 1916. Yet almost no one accepted Einstein’s
hypothesis of light quanta [3]. Light is a wave; how could light quanta produce interference?

Then in 1923, Compton showed that light, scattering off electrons at rest, imparts momen-
tum in an amount that depends on the wavelength of the light, but not on its intensity. He found
a clear relationship between θ, the angle through which the light scattered, and the change in
its wavelength:

λf − λi =
h

mc
(1 − cos θ) ,

where λf and λi are the final and initial wavelengths of the light, respectively, and m is the
mass of the electron. The Compton effect strongly suggests that light quanta – photons – of
wavelength λ carry momentum h/λ as well as energy hν, for then the relationship follows from
conservation of energy and momentum. (See Prob. 2.4.) In the same year, de Broglie proposed
that if light waves could behave like particles, then particles could behave like waves. Four
years later, Davisson and Germer observed electron diffraction and confirmed de Broglie’s
relation between the momentum p and the wavelength λ of a particle:

p = h/λ . (2.4)
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Quanta had arrived.
Section 1.4 notes that relativity theory resolves a paradox: electromagnetism and New-

ton’s mechanics are incompatible. The theory of relativity resolves this paradox by modifying
Newton’s mechanics. In retrospect, we see that quantum theory, too, resolves a paradox. Sta-
tistical mechanics and electromagnetism are incompatible; together, they imply the Rayleigh–
Einstein–Jeans law, Eq. (2.2), and an infinite energy densityU(T ) for electromagnetic radiation.
This is a paradox of the third class, the class of contradictions. (See Chap. 1.) Quantum theory
resolves the paradox by modifying electromagnetism: electromagnetic radiation of frequency
ν cannot carry energy in arbitrary amounts, but only in quanta of energy hν. Together, statisti-
cal mechanics and the modified electromagnetism imply the Planck law, Eq. (2.1), and a finite
U(T ). (See Prob. 2.5.)

2.3 Uncertainty Relations

Quanta behave like waves and like particles. Are they waves or particles? Whatever they are,
quanta confront us with a paradox each time we make a measurement. If quanta behave like
waves, how can we measure their position? If they behave like particles, how can we measure
their wavelength? We can live with the paradox, but it implies fundamental limits to what we
measure. Here we derive these limits informally; for a formal derivation, see Prob. 3.10 and
Sects. 5.3 and 7.3.

Consider a measurement with a microscope. A light microscope can resolve features of
small objects, up to a limit. The limit depends on the wavelength of the light. The smallest
separation ∆x that a lens can resolve in its object plane (the x-axis in Fig. 2.2) is approximately

∆x ≈ λ/2 sin θ ,

where λ is the wavelength of the light and θ is half the angle subtended by the lens at the
object. (See Prob. 2.6.) So if we want to determine the position of a small object with an
accuracy ∆x, we need light of wavelength λ ≤ 2(∆x) sin θ. In both classical and quantum
physics, we have light of such short wavelengths. But in quantum physics, short wavelengths
correspond to quanta carrying high momenta, as Eq. (2.4) shows. A high momentum photon
scatters off the measured object and alters its momentum. Suppose we illuminate the object
from the side with light of wavelength λ = 2(∆x) sin θ. The light consists of photons of
momentum pγ = h/λ = h/2(∆x) sin θ in the x-direction. When a photon scatters off the
object we do not know in which direction it scatters, only that it reaches the lens (if it is at all
relevant to the measurement); thus all that we know about its final momentum in the x-direction
is that it lies between −pγ sin θ and pγ sin θ, i.e. between −h/2∆x and h/2∆x. The photon
alters the momentum of the object by this uncertain amount, hence the measurement of the
object’s position along the x-axis leaves us uncertain about its momentum in the x-direction;
the uncertainty ∆px in its momentum is at least ∆px ≥ h/∆x. In particular, we cannot rely
on a prior measurement of momentum for predicting the future position of the object. This is
the meaning of the Heisenberg uncertainty relation [4]:

∆x∆px ≥ h . (2.5)



16 2 How to Weigh a Quantum

∆x

xO O'
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Figure 2.2: Two points O and O′ with separation
∆x; their respective images, each the maximum of a
diffraction pattern, are I and I ′.

Equation (2.5) is revolutionary. Consider, for example, an atom of hydrogen. Its radius is
roughly the Bohr radius a0 = 0.53 Å (that is, 5.3 ×10−9 cm); its ionization energy is 13.6
electron volts (eV). Suppose we measure the position of the electron to better than the Bohr
radius, i.e. ∆x < 5.3 × 10−9 cm. According to Eq. (2.5), our position measurement entails
uncertainty in the electron’s momentum of at least

∆p > h/∆x ≈ 1.25 × 10−18g cm/sec .

We might estimate the kinetic energy of the electron after the position measurement to be

(∆p/2)2/2m ≈ (6 × 10−19g cm/sec)2/2 × (9.1 × 10−28g)
(2.6)

≈ 2 × 10−10erg ≈ 130eV ,

where m≈ 9.1 × 10−28 g is the mass of the electron. This kinetic energy is greater than
the ionization energy, so the attempt to locate the electron within the atom ionizes the atom!
Actually, we have overestimated the kinetic energy,2 but any attempt to localize the electron
to a well defined orbit within the hydrogen atom will indeed ionize the atom.

We obtained Eq. (2.5) from an experiment with a microscope, but Eq. (2.5) holds for any
measurement of position and momentum. We always find that conditions for a precise mea-
surement of x conflict with conditions for a precise measurement of p. The conflict illustrates

2A good estimate of the kinetic energy is (�/∆x)2/2m ≈ 14 eV.
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D
d

L

Figure 2.3: Two-slit interference experiment. Elec-
trons enter from the left in the direction of the arrow.
Magnification shows dots making up the interference
pattern.

Bohr’s principle of complementarity: measurements of canonically conjugate variables (such
as x and p) impose conflicting conditions. The more an experiment fulfills the conditions for
measuring one variable, the less it fulfills the conditions for measuring the conjugate variable.
When we quantify the complementarity between the measurements, we obtain Eq. (2.5) (and
analogous uncertainty relations for other pairs of conjugate variables).

Complementarity allows us to live with paradox, but the paradox remains. Particles and
waves are complementary pictures of quanta. Each picture contains a part of the truth; but
there is no picture uniting the wave and particle pictures. Indeed, they contradict each other.
Consider a beam of electrons impinging on three screens. (See Fig. 2.3.) The first screen has
only one slit. The second screen has two slits, separated by a distance d. The distance between
the two screens is much larger than d, so waves passing through the first screen and arriving
at the two slits of the second screen have effectively parallel wave vectors. The waves passing
through the two slits interfere, producing a pattern of alternating light and dark bands on the
third screen, a distance L from the second. The spacing between adjacent dark bands is D.
This is the familiar phenomenon of wave interference, with

D ≈ λL/d , (2.7)

if the wavelength is λ. What is new is that the electrons are not simply waves. They also
behave like particles. If the beam intensity drops until only one electron passes through the
apparatus at a time, the pattern of light and dark bands still appears. The light and dark bands
emerge from marks that appear one by one on the screen, even when the time interval between
successive marks is longer than the time of flight of an electron through the apparatus [5].

2.4 The Clock-in-the-Box Paradox

The double-slit experiment figured in the Bohr-Einstein debate on whether quantum theory
is consistent. Einstein saw in it a paradox. Suppose we prepare the middle screen with no
transverse momentum, and measure its transverse momentum after an electron passes through
it. (See Fig. 2.4(a).) By measuring the recoil of the screen after the electron passes, we can
infer through which slit it passed. Let us denote the electron’s final transverse momentum by
p
(L)
⊥ if the electron passes through the left slit and by p(R)

⊥ if it passes through the right slit.
(See Fig. 2.4(b).) If the electron passes through the left slit and arrives at point P , the middle
screen must acquire momentum −p(L)

⊥ to conserve momentum; if it passes through the right
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(b)
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p(R)-p(L)

p
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d

Figure 2.4: (a) The two-slit interference
experiment of Fig. 2.2 adapted for mea-
suring the transverse momentum of the
middle screen. (b) The second and third
screens seen from above, with interfer-
ing electron paths and corresponding mo-
menta.

slit on its way to P , the middle screen acquires momentum −p(R)
⊥ . Thus we can determine

through which slit the particle passed by measuring the final momentum of the middle screen.
How can there be an interference pattern? This is a paradox of the first class, an error. Bohr
resolved the paradox by applying the uncertainty relations consistently. If we measure the
momentum ps of the screen with an accuracy ∆ps, then any simultaneous measurement of the
position xs of the screen entails an uncertainty ∆xs such that

∆xs ≥ h/∆ps . (2.8)

How well do we need to measure ps? We want to detect whether a particle that arrives at P
came via the left slit or the right one. In order to determine through which slit the electron
passes, we must measure ps to accuracy ∆ps better than p(R)

⊥ − p
(L)
⊥ = |p(R) − p(L)|. From

similarity of triangles, p(R)
⊥ − p

(L1)
⊥ divided by the electron’s longitudinal momentum p‖ is

equal to d/L. The longitudinal momentum p‖, according to de Broglie, is h/λ (assuming p‖
large compared to the transverse momentum). Thus

∆ps <
d

L
(h/λ) . (2.9)
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From Eqs. (2.7–9) we obtain ∆ps < h/D and thus ∆xs > D. The uncertainty in the
transverse position xs of the screen, arising from an accurate enough measurement of its
transverse momentum ps, is the distance D between successive dark bands in the interference
pattern. We cannot position the slits themselves more precisely than D, so the interference
pattern is completely washed out. So when we can determine the electron path, no interference
pattern remains. According to Bohr, this resolution saves us from the paradoxical conclusion
that the behavior of an electron depends on the presence of a slit through which it did not pass.

Einstein posed a more subtle paradox during the sixth Solvay conference in 1930: his
“clock-in-the-box paradox” seemed to violate the uncertainty relation for energy and time,

∆E∆t ≥ h . (2.10)

(See Prob. 2.8.) Imagine a box that emits a photon; a clock in the box determines the emission
time. (See Fig. 2.5.) The box hangs from a spring scale which measures its weight. Its weight
is proportional to its rest mass m, hence to its energy E, according to Einstein’s formula
E = mc2. Einstein argued as follows: Suppose we wait for the box to settle down and make
an accurate initial reading of the scale. This reading can be as slow and accurate as we like.
After the photon leaves the box, we make a final reading of the scale, again as accurate as we
like, and from the difference between the two readings we get an accurate measurement of the
energy of the emitted photon. On the other hand, the clock in the box tells exactly when the
photon was released, so we violate Eq. (2.10). Rosenfeld, who was soon to become Bohr’s
assistant, described Bohr’s reaction to this argument: “It was quite a shock for Bohr to be
faced with this problem; he did not see the solution at once. During the whole evening he was
extremely unhappy, going from one to the other and trying to persuade them that it couldn’t
be true, that it would be the end of physics if Einstein were right; but he couldn’t produce any
refutation . . . The next morning came Bohr’s triumph and the salvation of physics . . . .” [6].

Figure 2.5: Bohr’s setup for Einstein’s clock-in-
the-box paradox. [Reprinted by permission of Open
Court Publishing Company, a division of Carus Pub-
lishing Company, Peru, IL, from Albert Einstein:
Philosopher–Scientist (Library of Living Philoso-
phers VII), ed. P. A. Schilpp, copyright c© 1949 and
1951 by the Library of Living Philosophers, Inc.]
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Bohr triumphed as follows. Let x denote the position of the pointer on the scale and
p its momentum, with ∆x and ∆p the corresponding uncertainties. Once we choose ∆x,
Heisenberg’s uncertainty relation bounds ∆p from below:

h

∆x
≤ ∆p . (2.11)

Bohr assumed a standard procedure for weighing the photon: After the photon emission, the
pointer moves (higher on the scale). By hanging little weights on the box, we lower it to its
original position. When it has returned to its original height, the total weight hanging from it
equals the weight of the emitted photon. However, the accuracy of this weighing is no better
than the smallest added weight g∆m that has an observable effect. If we add a mass ∆m and
wait a time t, the impulse delivered to the box cannot be greater than (g∆m)t, which must be
greater than ∆p to be observable. Thus we have

∆p < gt∆m . (2.12)

From Eqs. (2.11–12) we obtain h ≤ ∆x∆p < gt∆x∆m. Using ∆E = c2∆m (because
we infer the energy of the photon from the change in mass of the box) we obtain

h <
gt∆x∆E

c2
. (2.13)

Still, Eq. (2.13) does not resolve Einstein’s paradox, for ∆E is paired with ∆x instead of ∆t.
Einstein assumed that the reading of the pointer could take unlimited time. But Bohr applied

a result from Einstein’s own theory of general relativity. According to the time-dilation formula
of general relativity, a clock in a gravitational field ticks more slowly than a clock in free fall.
Two clocks at different heights above the Earth will run at different rates, because of their
gravitational potential difference. If the difference in height is ∆x, the fractional difference
∆t/t in their measured times will be

∆t
t

=
g∆x
c2

. (2.14)

We can also let ∆x and ∆t in Eq. (2.14) denote uncertainties; if ∆x is the uncertainty in the
vertical position of a clock, then ∆t is the uncertainty in the clock time due to the uncertain
gravitational potential. Over a period t, the uncertainty in the time of the clock amounts to

∆t = tg∆x/c2 .

Combining this result with Eq. (2.13) we obtain

∆t∆E > h ,

as required by quantum theory. Bohr’s triumph is impressive – and also, at first glance, spooky.
How does quantum theory know about general relativity? The answer is simple. To measure
the mass of the box and its contents, we weigh it. But energy is equivalent to inertial mass. We
weigh the gravitational mass. By assuming them to be equal, we have assumed the principle
of equivalence, one of the axioms of general relativity. This axiom and the equivalence of mass
and energy imply the time-dilation relation of general relativity, Eq. (2.14). (See Prob. 2.9.)
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2.5 From Inconsistency to Incompleteness

The clock-in-the-box paradox was a turning point in Einstein’s criticism of quantum theory.
Before, he invested his efforts in proving that quantum theory is inconsistent. These efforts
failed; the clock-in-the-box paradox, too, belongs to the class of errors. After the Solvay con-
ference, Einstein stopped trying to prove the inconsistency of quantum theory, and instead tried
to prove that quantum mechanics is incomplete. Einstein’s efforts to prove the incompleteness
of quantum theory led him to a paradox, the paradox of Einstein, Podolsky and Rosen (EPR),
which opens the next chapter. Unlike the clock-in-the-box paradox, the EPR paradox was not
resolved overnight; it has taken decades to unravel.

Problems

2.1 Consider two frequencies of light, νR = 4.3 × 1014/sec (red) and νY = 5.2 × 1014/sec
(yellow).
(a) For radiation from a black body at temperatures T equal to 1473 K, 1273 K, 1073 K
and 873 K, compute the ratio u(νY , T )/u(νR, T ) according to the Planck law, Eq. (2.1).
(b) Apply these results to estimate the color of black body radiation at these temperatures,
assuming that the human eye is six times more sensitive to yellow light than to red light.
(c) Compute the frequencies that maximize u(ν, T ) at these temperatures.

2.2 (a) Show that in a cube of volume L3 with periodic boundary conditions, wave numbers
k satisfy kx = 2πnx/L, ky = 2πny/L and kz = 2πnz/L, where nx, ny and nz are
integers.
(b) Derive the density of states

dnxdnydnz
L3 =

dkxdkydkz
(2π)3

.

(c) Derive

dkxdkydkz
(2π)3

=
4πν2

c3
dν

in the case of spherical symmetry.

∗2.3 Suppose that the energy density u(ν, T ) of radiation from a black body is unknown, but
known to approach Eq. (2.2) as ν approaches 0. Show that the integral

∫∞
0 u(ν, T )dν

diverges unless the color of light from a black body changes with its temperature, i.e.
unless u(ν, T ) does not scale with T . (Note that there is no fundamental constant of
length in electromagnetism and statistical mechanics.)

2.4 Apply relativistic energy and momentum conservation to the scattering of massless
photons off electrons at rest to derive Compton’s relation λf −λi = (h/mc)(1−cos θ),
where λi and λf are the initial and final photon wavelengths, m is the electron mass
and θ is the angle of scattering of the photons.
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2.5 Derive the Planck law, Eq. (2.1), from the partition function for the degrees of freedom
of electromagnetic radiation at temperature T , assuming Eq. (2.3) and treating each
mode as a harmonic oscillator with energy levels hν, 2hν, 3hν, . . . .

2.6 Diffraction limits the resolving power of a lens. According to Rayleigh’s criterion, a
lens barely resolves two pointsO,O′ if the central maximum of the diffraction pattern of
O lies within the first minimum of the diffraction pattern ofO′. (See Fig. 2.2.) For side
illumination with light of wavelength λ, Rayleigh’s criterion implies [7] a difference
between the extremal paths O′LI and O′RI of about one wavelength λ. Show that
∆x ≈ λ/2 sin θ follows from this criterion.

2.7 Show how the microscope measurement in Sect. 2.3 illustrates the principle of comple-
mentarity for position vs. momentum.

2.8 Consider a free particle of energy E and momentum p passing a point on its trajectory
at a time t. Assume p � ∆p.
(a) Express the uncertainties ∆E and ∆t in terms of p, ∆p and the uncertainty ∆x in
the particle’s position.
(b) Show that ∆x∆p ≥ h implies ∆E∆t ≥ h.

2.9 Consider a rocket with an upper and a lower chamber. A clock in the upper chamber
emits a flash every T seconds. A detector in the lower chamber registers each flash.
The distance between the clock and the detector is ∆x (in the rest frame of the rocket)
and the rocket accelerates with constant acceleration g.
(a) Consider an inertial reference frame moving with the same velocity v as the rocket
at a given instant. Assume v � c and show that in this inertial reference frame the flash
reaches the detector after a time t = ∆x/(c+ v).
(b) Show that the time interval between flashes at the detector is T − ∆T where

∆T
T

=
g∆x
c2

.

(c) Obtain Eq. (2.14) from the principle of equivalence.

∗2.10 Consider a frictionless track that is mostly horizontal but inclined at an angle θ at both
ends, as in Fig. 2.6. We release a box from one end. Before it reaches the other end,
the box emits a photon at a time t determined by a clock in the box. If m is the mass
of the box and its contents, then the energy E of the photon equals the change in mc2.
Suppose we measure p, the momentum of the box on the horizontal part of the track,
and y, its height at rest on the inclined part, before and after the emission. Then we can
determine m by equating the kinetic energy p2/2m and potential energy mgy of the
box:

m = p/(2gy)1/2

Show how the uncertainty relation ∆E∆t ≥ h applies to this experiment.
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Figure 2.6: The clock in the box of Fig. 2.4 on a mostly horizontal, frictionless track with ends inclined
at an angle θ. [Adapted from Fig. 2.5 by permission of Open Court Publishing Company.]

∗2.11 A box of mass M emits a photon at time t according to a clock in the box. The box
moves horizontally on a frictionless track; it is attached to a spring with spring constant
k, known to great precision. Before and after the photon emission, we measure the
angular frequency ω of the harmonic motion to great precision (by measuring the time
it takes the box to complete many periods). We calculate the energy E of the emitted
photon from the change in mc2 where m = k/ω2. Show that ∆E∆t ≥ h, where ∆E
and ∆t are the uncertainties in the energy and emission time of the photon.

∗2.12 A heavy box of mass M emits a photon at a time t according to a clock in the box.
Assume that the box is initially at rest. We measure its initial mass as follows: We
hit it with a particle of known mass m and initial momentum p0, and measure the
final momenta p, P of the particle and of the box, respectively; from conservation of
momentum and energy we derive M . We then stop the box’s motion by hitting it a
second time with the same particle, but with momentum −p. After the emission of the
photon, we measure the final mass of the box in the same way.
(a) Express the mass M in terms of m, p, p0 and P .
(b) Calculate the uncertainty ∆E in the energy of the photon and show that ∆E∆t ≥ h.
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3 Is Quantum Theory Complete?

In quantum theory, every measurement entails a choice. If we choose to measure one observable
(physical variable), we choose not to measure some other observable. In confronting us with
these choices quantum theory is consistent, but does quantum theory provide a complete account
of all that we observe? Is quantum theory perhaps incomplete?

The title of a paper by Einstein, Podolsky and Rosen [1] (EPR) asks this question. So
does the title of a reply by Bohr [2]. Einstein, Podolsky and Rosen considered the possibility
of a complete theory. Such a theory, they claimed, must represent both the position and the
momentum of a particle at any time, with arbitrary accuracy. Quantum theory does not; hence,
quantum theory is incomplete.

The next section presents the EPR claim that quantum theory is incomplete. Einstein,
Podolsky and Rosen believed a complete theory to be possible, although they did not show
how to complete the theory. Is there such a complete theory? This question has a remarkable
answer – one which Einstein, Podolsky, Rosen and Bohr did not anticipate.

3.1 The Einstein–Podolsky–Rosen Paradox

Einstein, Podolsky and Rosen used quantum mechanics in their paper. But the mathematical
formalism is not necessary. Here we present the EPR paradox without the formalism, just as
Bohr did in his reply to the EPR paper.

Suppose two particles that once interacted are now apart and no longer interact. Since they
do not interact, a measurement on one particle does not affect the other particle. But since they
interacted in the past, a measurement on one particle may be an indirect measurement on the
other particle. For example, we can measure the position of a particle indirectly. In Fig. 3.1, a
pair of massive particles approaches a board with two slots in it, a distance L apart. Suppose
that the particles pass through the board through different slots, at the same time. (It may be
unlikely that they pass through the two slots, but we can try many times until two particles do
pass through the two slots simultaneously.) In this way we establish that the vertical distance
between two particles, as they pass through the board, is L. Now we measure the height of
one of the particles right after they pass through the board. We indirectly measure the height
of the other particle, too, without affecting it.

We can combine the position measurement with a momentum measurement. Consider
measurements of position and momentum along the vertical axis (x-axis) in Fig. 3.2. Particles
arrive at the board in pairs, as in Fig. 3.1; let x1 and p1 denote the position and momentum
components of one particle, and x2 and p2 the position and momentum components of the

Quantum Paradoxes: Quantum Theory for the Perplexed. Y. Aharonov and D. Rohrlich
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN 3-527-40391-4
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L

(a) (b)

Figure 3.1: (a) An experiment to measure the height
of one particle relative to another. (b) Side view of
the experiment.

x

(a) (b)

Figure 3.2: (a) An experiment to measure x2 − x1,
the relative height of two particles, and p1 + p2, their
total momentum along the vertical axis, at the same
time. (b) Side view of the experiment. Initially, p1 =
0 = p2; while p1 and p2 may change as the particles
pass through the slots, the vertical recoil of the board
measures the change in p1 + p2.

other. We arrange that initially, p1 = p2 = 0; the initial momenta are horizontal. Also, before
and after each pair arrives at the board, we accurately measure the momentum component of
the board itself. Since the total momentum of the particles and the board remains constant
during the passage, this experiment yields the total momentum p1 + p2 of the particles after
they pass through the board (even if they knock against the slots as they pass through). It also
yields the vertical distance x2 − x1 between the particles as they pass through the board (if
they pass through the two slots). Right after they pass through the board, we can indirectly
measure either the position or momentum of one particle in a pair without affecting it. For
example, from a direct measurement of x1 we can infer x2 and from a direct measurement of
p1 we can infer p2.
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The measurements in this thought experiment do not contradict the uncertainty relations.1

We measure the momentum of the board, but we never have to measure the position of the
board. We prepare pairs of particles for which p1 and p2 vanish initially, but we assume nothing
about x1 and x2 initially. Bohr showed, however, that the EPR experiment confronts us with
a choice between complementary measurements. We can measure x1 and infer x2 from the
result. However, measuring x1 may affect p1. After measuring x1, we cannot measure p1
and infer p2 from the result. Alternatively, we can measure p1 and infer p2 from the result.
However, measuring p1 may affect x1; after measuring p1, we cannot measure x1 and infer x2
from the result. We could also measure p2 indirectly and x2 directly. But the x2 measurement
affects p2 just as it does when we measure p2 and x2 directly. Thus ∆x2 and ∆p2 satisfy the
same uncertainty relation whether we measure x2 or p2 directly or indirectly.

So once again, Bohr showed that quantum theory is consistent. But is quantum theory
complete? Einstein, Podolsky and Rosen did not claim that quantum theory is, or is not,
consistent; they claimed that quantum theory is not complete. Let us consider the EPR claim.

We return to the thought experiment. Suppose we prepare a pair of particles with x2−x1 =
L. If the board does not recoil up or down, then we also have p1 + p2 = 0. Next we measure
p2 and either x1 or p1. By assumption, the particles do not interact, so the result of the p2
measurement cannot depend on whether we measure x1 or p1. What is p2? If we measure p1
and obtain p1 = p, we also obtain p2 = −p because p1 + p2 = 0. If we measure x1 we cannot
measure p1, and quantum theory does not predict the result of the p2 measurement. But the
result of the p2 measurement cannot depend on whether we measure x1 or p1, by assumption.
Hence we must still obtain p2 = −p, i.e. some predetermined result independent of what we
measure on the other particle (and which particle we measure first). Since quantum theory
does not predict this result, quantum theory is incomplete. This is the EPR claim.

The EPR claim is a paradox for quantum uncertainty. Let two observers, Alice and Bob,
prepare a pair of particles with x2 − x1 = L and p1 + p2 = 0 where L is very large. Next
Alice, located near one particle, measures either x1 or p1; Bob, located near the other particle,
measuresp2. They choose independently what to measure and their measurements are spacelike
separated. Later they may meet and compare their results, but the experiment is over once they
complete their measurements. In some inertial reference frame, Alice measures first. She
measures either the position or the momentum of her particle. If Alice measures momentum,
Bob’s uncertainty about the momentum of his particle (before he measures it) is subjective,
according to Alice. If Alice measures position, Bob’s uncertainty about the momentum of
his particle (before he measures it) is objective, according to the uncertainty relations. But
in another frame, Bob measures first, and we cannot distinguish subjective from objective
uncertainty.

Does the EPR claim have implications for experiment? We might well wonder. Pauli,
writing to Born in 1954, expressed doubt: “As O. Stern said recently, one should no more rack
one’s brain about the problem of whether something one cannot know anything about exists
all the same, than about the ancient question of how many angels are able to sit on the point of
a needle. But it seems to me that Einstein’s questions are ultimately always of this kind” [3].

1Formally, we have [x2 − x1, p1 + p2] = 0, so the uncertainty relations do not constrain simultaneous measure-
ments of x2 − x1 and p1 + p2. (See Prob. 3.10.)
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Yet Pauli was wrong; the EPR claim is testable! Ten years later, Bell discovered that the EPR
claim implicitly contradicts predictions of quantum mechanics.

3.2 Polarized Photons

If we replace the position and momentum measurements in the EPR thought experiment with
spin or polarization measurements, it becomes a practical experiment. Bohm reformulated the
EPR paradox for such an experiment [4]. At one stroke he confronted the EPR claim with
experiment and with quantum theory. In this section we discuss polarization in classical and
quantum theory; in Sect. 3.4 we present Bohm’s formulation and apply it – as Bell did – to
show that the EPR claim contradicts predictions of quantum mechanics.

Figure 3.3 shows two polarizers – disks of polaroid or another polarizing material – with
a common axis of rotation. Light from a lamp or the sun shines on the first polarizer, through
a pinhole on the axis; some of this light passes through the polarizers. What happens if we
rotate one polarizer with respect to the other? Experiment shows a change in the intensity of
light passing through the polarizers. Each polarizer has a pass axis, and the second polarizer
passes a fraction cos2(θ−θ′) of the light that passes the first polarizer, where θ−θ′ is the angle
between their pass axes. What accounts for this effect? Let us first consider the classical, and
then the quantum, account.

In classical theory, light is an electromagnetic wave. Like any electromagnetic wave, light
is either monochromatic or a superposition of monochromatic waves; a monochromatic wave
has a propagation vector k (which fixes the angular frequency ω = c|k| of the wave) and
a polarization (which fixes the direction of the electric field E(x, t)). Since there are two
independent directions for E – which must be perpendicular to k – there are two independent
polarizations. Let unit vectors ε1 and ε2, with ε1 · ε2 = ε1 · k = ε2 · k = 0, represent the two
(linear) polarizations. Then the electric field of a monochromatic wave is a superposition

E(x, t) = E1ε1 cos(k · x − ωt+ φ1) + E2ε2 cos(k · x − ωt+ φ2) (3.1)

with real phases φ1, φ2 and coefficients E1, E2. Without loss of generality we can take
|φ2 − φ1| ≤ π/2.

Figure 3.3: Two polarizers with an angle θ − θ′ between their pass axes.
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E1 

 E2

    E1cos( 2- 1) 

    E2cos( 2- 1) 

Figure 3.4: The electric field E(x, t) of Eqs. (3.1–2)
traces out an ellipse at each point x.

If φ1 = φ2, the polarization is linear. Otherwise, the polarization is elliptic. A special
case of elliptic polarization is circular polarization: |E1| = |E2| and φ1 − φ2 = ±π/2. (See
Fig. 3.4.) Now a polarizer passes only the component of E that is parallel to its pass axis; hence
light that passes through a polarizer is linearly polarized. Let us represent the polarization of the
light passing through the first polarizer as a unit vector P = P1ε1 +P2ε2 = cos θ ε1 +sin θ ε2
parallel2 to E. Of this light, only the component parallel to P′ = P ′

1ε1 + P ′
2ε2 = cos θ′ε1 +

sin θ′ε2 passes through the second polarizer. So the second polarizer reduces the amplitude of
E by P ·P′ = P1P

′
1 +P2P

′
2 = cos(θ− θ′) and reduces the intensity (which is proportional to

the amplitude squared) by cos2(θ − θ′). The experiment in Fig. 3.3 shows the effect of linear
polarization.

Now what happens if we reduce the incident light intensity? Classical theory predicts, and
experiment confirms, that the same fraction of light, cos2(θ− θ′), passes the second polarizer,
whatever the incident light intensity. But what if we reduce the incident light intensity until the
energy of the light passing through the polarizers is roughly �ω = hν? According to quantum
theory, the incident light consists of photons of energy �ω. (See Eq. (2.3).) Hence only one
photon passes through a polarizer at a time. This photon either does or does not pass the second
polarizer. It cannot split into a part that passes the polarizer and a part that does not, because
its angular frequency ω, and therefore its energy �ω, cannot change as it passes through the
polarizer. So cos2(θ−θ′) must be the probability that a photon arriving at the second polarizer
will pass through it.

We can generalize this experiment by using birefringent panes [5]. It is convenient to
express E(x, t) as the real part of a complex wave [6]:

E(x, t) = � [
(E1e

iφ1ε1 + E2e
iφ2ε2)eik·x−iωt ] . (3.2)

Because electric fields add as vectors, the polarizationsE1e
iφ1ε1 andE2e

iφ2ε2 add as vectors,
even when they are complex. Equation (3.2) allows us to represent the polarization of an

2If necessary, we can change the sign of E by adding π to φ1 and to φ2.
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electromagnetic wave as a vector |P〉 in a two-dimensional complex vector space:

|P〉 =
E1

E
eiφ1 |ε1〉 +

E2

E
eiφ2 |ε2〉 ,

where E = (E2
1 + E2

2)1/2. We let |P〉, |ε1〉, |ε2〉 denote vectors in the complex vector space
of polarizations, while P, ε1, ε2, denote vectors in the real vector space of directions perpen-
dicular to k. Now a birefringent pane has an optic axis, and it shifts the relative phase between
polarization components (i.e. between the component parallel to the optic axis and the com-
ponent perpendicular to it) by an amount that depends on the thickness of the pane. By placing
birefringent panes on either side of a polarizer, we can make it select (pass) monochromatic
light with arbitrary polarization. We have a selector for arbitrary polarizations, not just linear
polarizations. Figure 3.5 shows two such selectors. Suppose the first selector selects light of
polarization |P〉 and the second selector selects light of polarization |P′〉. What fraction of
light passing the first selector also passes the second selector? Prob. 3.2 shows that the fraction
is

|〈P|P′〉|2 , (3.3)

where the scalar product 〈P|P′〉 between two vectors |P〉 = P1|ε1〉 + P2|ε2〉 and |P′〉 =
P ′

1|ε1〉 + P ′
2|ε2〉 generalizes P · P′:

〈P|P′〉 = P ∗
1 P

′
1 + P ∗

2 P
′
2 .

(The asterisk denotes complex conjugation.) For example, if |P〉 = |ε2〉 and |P′〉 =
(|ε1〉 + i|ε2〉) /√2, then 〈P|P′〉 = i/

√
2 and the fraction is 1/2. If |P〉 = |P′〉, the pho-

ton will certainly pass through the selector. If |P〉 is orthogonal to |P′〉, i.e. 〈P|P′〉 = 0,
the photon will certainly not pass. In general, |P〉 is a complex superposition of |P′〉 and
the orthogonal polarization, and a fraction |〈P|P′〉|2 of the photons that pass through the first
selector also pass through the second selector. When the polarizations |P〉 and |P′〉 are linear,
Eq. (3.3) reduces to cos2(θ − θ′).

Figure 3.5: Each polarizer, sandwiched between birefringent panes,
selects a particular elliptical polarization. Assume the two birefringent
panes have optic axes parallel to ε1. The first birefringent pane has just
the right thickness to convert a particular elliptical polarization to the
linear polarization that this polarizer passes; the second birefringent
pane then converts the linear polarization back to the original elliptical
polarization by restoring the relative phase φ2 − φ1.
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3.3 Quantum States and Observables

Photon polarization illustrates a correspondence between quantum states and measurements.
The polarization |P 〉 is an example of a quantum state in a two-dimensional complex vector
space – Hilbert space. The Hilbert space is two-dimensional, because if a photon arrives at a
polarizer, there are two possible outcomes: the photon either does or does not pass through the
polarizer. A measurement may have more than two possible outcomes. Section 3.4 considers
measurements on pairs of photons. Each photon in a pair arrives at a polarizer and either does
or does not pass through. There are four mutually exclusive answers to the question, “Do the
two photons pass through the polarizers?” Thus polarization states of two photons are vectors
in a four-dimensional Hilbert space; a basis for this space is |ε1〉⊗ |ε1〉, |ε2〉⊗ |ε1〉, |ε1〉⊗ |ε2〉
and |ε2〉⊗ |ε2〉, where the first state in each product represents one photon and the second state
represents the other. The Hilbert space of a quantum system has dimension N if a complete
measurement on the system has N possible outcomes.

This correspondence between quantum states and measurements follows the principle of
complementarity. There are only two basis vectors for the polarization state of a photon,
because an experiment can select only one (and reject only one) polarization at a time. There
are infinitely many basis vectors for the position of a particle, because an experiment that selects
one position rejects infinitely many other positions. (See Prob. 3.9.) But there are no additional
basis vectors for the momentum of the particle, because the principle of complementarity allows
us to measure either the position or the momentum of a particle accurately. There are basis
vectors for momentum, but they are superpositions of the basis vectors for position (and vice
versa). Incompatible measurements on a system correspond to incompatible bases for the
Hilbert space of the system.

By measuring an observable A on a system, we choose a basis of states. Let us denote the
basis states |i〉, where i = 1, . . . , N for an N -dimensional Hilbert space, and take 〈i|j〉 = δij
– the basis is orthonormal. (See Prob. 3.5.) The correspondence with A is that if the system
is in a state |i〉, a measurement of A yields an outcome ai with certainty. 3 All other possible
states |ψ〉 of the system are linear combinations of the |i〉 with complex coefficients ci,

|ψ〉 =
∑
i

ci|i〉 ,

with the constraint
∑
i c

∗
i ci = 1, just as any polarization vector is a linear combination of |ε1〉

and |ε2〉 with complex coefficients satisfying the same constraint. The scalar product of two
states |ψ〉 and |ψ′〉, denoted 〈ψ|ψ′〉, is the generalization of 〈P|P′〉 to Hilbert spaces of more
than two dimensions. That is, if |ψ′〉 is

|ψ′〉 =
∑
i

c′i|i〉 ,

then the scalar (or inner) product of |ψ〉 and |ψ′〉 is

〈ψ|ψ′〉 =
∑
i

c∗i c
′
i .

3If A is degenerate, i.e. if ai = aj for some i �= j, we also measure a nondegenerate observable on |i〉 and |j〉
for a complete measurement.
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The square of the absolute value of 〈ψ|ψ′〉 is the probability that a measurement on a system
in the state |ψ〉 will show it to be in the state |ψ′〉 (or vice versa), just as |〈P|P′〉|2 represents
the probability that a measurement on a photon with polarization |P〉 will show it to have
polarization |P′〉 (or vice versa).

Now consider an experiment in which we prepare a system in a state |ψ〉 and measure A.
With probability |〈ψ|i〉|2 the measurement leaves the system in a state |i〉 and the measured
value of A is ai. (The constraint

∑
i c

∗
i ci = 1 insures that the probabilities |〈ψ|i〉|2 sum to 1.)

If we repeat this experiment (the preparation and the measurement) many times, the average
measured value of A will be

∑
i

ai|〈ψ|i〉|2 ,

which we can write 〈ψ|A|ψ〉 by defining a linear Hermitian operator A:

A =
∑
i

ai|i〉〈i| . (3.4)

All observables of quantum theory are linear Hermitian operators. (See Probs. 3.3–4.) We
call 〈ψ|A|ψ〉 the expectation value of A in the state |ψ〉, letting A denote both the physical
variable and its operator. Applying A to the state |j〉 we find

A|j〉 = aj |j〉;
|j〉 is an eigenstate (or eigenvector) of A with eigenvalue aj .

3.4 Bell’s Inequality

A pion at rest decays into two photons. The photons fly off in opposite directions, with equal
and opposite momenta. What is their polarization state? It must be a linear combination of
the four basis vectors |ε1〉 ⊗ |ε1〉, |ε1〉 ⊗ |ε2〉, |ε2〉 ⊗ |ε1〉 and |ε2〉 ⊗ |ε2〉, but which linear
combination? The same question arises for the annihilation of a positron and an electron into
two photons in the decay of positronium, and for the emission of photon pairs in an atomic
cascade. Experiment shows that the polarization state of photons from pion or positronium
decay is

|Ψ1〉 =
1√
2

[|ε1〉 ⊗ |ε2〉 − |ε2〉 ⊗ |ε1〉] (3.5)

and not one of the states |Ψ2〉, |Ψ3〉 and |Ψ4〉:

|Ψ2〉 =
1√
2

[|ε1〉 ⊗ |ε2〉 + |ε2〉 ⊗ |ε1〉] ,

|Ψ3〉 =
1√
2

[|ε1〉 ⊗ |ε1〉 + |ε2〉 ⊗ |ε2〉] ,

|Ψ4〉 =
1√
2

[|ε1〉 ⊗ |ε1〉 − |ε2〉 ⊗ |ε2〉] . (3.6)
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We choose |Ψ1〉, |Ψ2〉, |Ψ3〉 and |Ψ4〉 as an orthonormal basis (rather than |ε1〉⊗|ε1〉, |ε1〉⊗|ε2〉,
|ε2〉 ⊗ |ε1〉 and |ε2〉 ⊗ |ε2〉) for two reasons. First, |Ψ1〉 and |Ψ3〉, but not |Ψ2〉 or |Ψ4〉, are
invariant under rotations around the axis of symmetry – the axis along which the photons
propagate. (See Prob. 3.7.) Therefore, the polarization state of the photons must be either
|Ψ1〉 or |Ψ3〉. Second, the parity of the state |Ψ1〉 is odd, while the parity of the states |Ψ2〉,
|Ψ3〉 and |Ψ4〉 is even. (See Prob. 3.8.) Pions and positronium have odd parity and decay by
emitting photons in the polarization state |Ψ1〉.

The scalar product of |Ψ1〉 with |ε1〉 ⊗ |ε1〉 or |ε2〉 ⊗ |ε2〉 vanishes; hence in the state
|Ψ1〉, the photons have opposite polarizations. In the state |Ψ3〉, which could arise from an
atomic cascade, the photons have the same polarization, because the scalar product of |Ψ3〉 with
|ε1〉 ⊗ |ε2〉 or |ε2〉 ⊗ |ε1〉 vanishes. These correlations hold even if we rotate the polarization
axes from ε1, ε2 to ε1′, ε2′,

|ε1′〉 = |ε1〉 cosφ− |ε2〉 sinφ ,
|ε2′〉 = |ε1〉 sinφ+ |ε2〉 cosφ , (3.7)

for |Ψ1〉 looks just the same in the new basis:

|Ψ1〉 =
1√
2

[|ε1′〉 ⊗ |ε2′〉 − |ε2′〉 ⊗ |ε1′〉] . (3.8)

So does |Ψ3〉:

|Ψ3〉 =
1√
2

[|ε1′〉 ⊗ |ε1′〉 + |ε2′〉 ⊗ |ε2′〉] . (3.9)

Equations (3.8–9) are just what rotational symmetry demands. An experiment in 1949 first
checked and confirmed the anticorrelated polarizations of photons pairs from pion or positro-
nium decay [7]. The experiment ruled out a model, suggested by Einstein, in which the state
|Ψ1〉 decays spontaneously to |ε1〉⊗ |ε2〉 or |ε2〉⊗ |ε1〉 (with equal probability) as the photons
fly off [8]. Later experiments checked and confirmed the correlated polarizations of photon
pairs emitted in an atomic cascade. How does the EPR claim apply to these experiments?

Let Alice and Bob help us with the measurements again. Pairs of photons fly off from an
atomic cascade, with one photon in each pair arriving at Alice’s polarizer and the other arriving
at Bob’s polarizer. After each arrival, Alice and Bob reset the pass axes of their polarizers.
They may reset the pass axes at random, from a finite list of settings, or according to a common
plan. Either way, they find that when the pass axes of their polarizers are parallel, both photons
in each pair pass the polarizers, or both do not; when the pass axes are at right angles, only one
photon in each pair passes a polarizer. Suppose that Bob sets the pass axis of his polarizer to
ε1. If Alice sets the pass axis of her polarizer to ε1, and a photon passes through, the photon
arriving at Bob’s polarizer also passes through. If Alice does not set the pass axis of her
polarizer to either ε1 or ε2, quantum theory does not predict whether the photon that arrives
at Bob’s polarizer passes through. What would Einstein, Podolsky and Rosen say? The result
of Bob’s measurement cannot depend on what Alice measures. Hence the photon arriving at
Bob’s polarizer must pass through anyway. Quantum theory is incomplete, because quantum
theory fails to predict that the photon must pass through.
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Indeed, EPR would claim that quantum theory is hopelessly incomplete. The conclusion
that holds when the pass axis of Bob’s polarizer is ε1 holds for any setting of his polarizer.
Similarly, it holds for any setting of Alice’s polarizer. Hence a complete theory must predict
the result of any polarization measurement by either Alice or Bob. But the photons cannot
anticipate what Alice and Bob will measure, so the EPR claim implies that every pair of
photons arrives at Alice’s and Bob’s respective laboratories with a complete – i.e. infinite –
list of results, one for each measurement that Alice and Bob might make. Still, the EPR claim
seems as untestable as Bishop Berkeley’s claim that a tree does not fall if no one sees it fall.

In 1964, however, Bell published a remarkable paper that showed, in effect, how to test
whether unseen trees fall [9]. He showed that the EPR claim implies an inequality that some
quantum correlations do not satisfy. Bell’s paper appeared in the first volume of a journal that
folded almost immediately. Moreover his test, involving electron spin, was not practical at the
time. But five years later, Clauser, Horne, Shimony, and Holt [10] (CHSH) generalized Bell’s
inequality; the CHSH inequality, applied to photon polarization, allows a practical test of the
EPR claim. Let us derive the CHSH inequality.

We return to Alice and Bob and their measurements. According to EPR, every pair of
photons represents a complete list of answers (results) for each pair of questions (observables)
that Alice and Bob might ask (measure). We refer to such lists as local plans; letλ denote a local
plan. Each local plan must list results for the observables that Alice and Bob may measure,
and the set of observables is infinite. But let us consider just two possible observables, A and
A′, that Alice may measure, and two observables, B and B′, that Bob may measure. Let ρ(λ)
denote the relative probability that a photon pair carries a local plan λ. We normalize ρ(λ):

∫
dλρ(λ) = 1 ,

where the integration is over all λ. Given a local plan λ, let P (A; a;λ) be the probability that
a measurement A yields the result a. Similarly, let P (A,B; a, b;λ) be the probability that
measurements A and B (on two photons) yield results a and b, respectively. The plan λ is
local, hence P (A,B; a, b;λ) factorizes:

P (A,B; a, b;λ) = P (A; a;λ)P (B; b;λ) . (3.10)

Now let P (A,B; a, b) be the probability that measurements ofA andB on a photon pair yield
a and b, respectively. It is the average of P (A,B; a, b;λ) weighted by ρ(λ), i.e.

P (A,B; a, b) =
∫
dλρ(λ)P (A,B; a, b;λ) .

We define the correlation between measurements A and B to be

C(A,B) =
∑
ij

aibjP (A,B; ai, bj) , (3.11)

where the ai and bj are possible results of measurements A and B, respectively. If A and B
are photon polarization or electron spin measurements, each has two possible results; but in
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general, we let A and B have any finite number of possible results. Without loss of generality,
we assume −1 ≤ ai, bj ≤ 1. We will prove that a combination SCHSH of correlations,

SCHSH(A,A′;B,B′) = C(A,B) + C(A′, B) + C(A,B′) − C(A′, B′) ,

is bounded above and below:

−2 ≤ SCHSH(A,A′;B,B′) ≤ 2 . (3.12)

To prove Eq. (3.12), we fix λ and look at the sum of products∑
ij

aiP (A; ai;λ)
[
bjP (B; bj ;λ) + b′jP (B′; b′j ;λ)

]

+
∑
ij

a′
iP (A′; a′

i;λ)
[
bjP (B; bj ;λ) − b′jP (B′; b′j ;λ)

]
. (3.13)

The absolute values of
∑
i aiP (A; ai;λ) and

∑
j bjP (B; bj ;λ) etc. are bounded by 1. Hence

each line in Eq. (13.3) is bounded in absolute magnitude by 2. The sum of the two lines is also
bounded by 2, because (for example) if

∑
j bjP (B; bj ;λ)+

∑
j b

′
jP (B′; b′j ;λ) has magnitude

2, then
∑
j bjP (B; bj ;λ) − ∑

j b
′
jP (B′; b′j ;λ) vanishes, and vice versa. (See Prob. 3.12.)

Thus

−2 ≤
∑
ij

[aibjP (A; ai;λ)P (B; bj ;λ) + a′
ibjP (A′; a′

i;λ)P (B; bj ;λ)

+ aib
′
jP (A; ai;λ)P (B′; b′j ;λ) − a′

ib
′
jP (A′; a′

i;λ)P (B′; b′j ;λ)] ≤ 2 .

Multiplying by ρ(λ) and integrating over λ, we obtain the CHSH inequality, Eq. (3.12):

−2 ≤ C(A,B) + C(A′, B) + C(A,B′) − C(A′, B′) ≤ 2 .

The CHSH inequality follows from the very assumption that local results exist, whether or not
anyone measures them – that a tree falls whether or not anyone sees it fall. This reasonable
ontological assumption underlies the EPR claim.

But some quantum correlations violate the CHSH inequality. To demonstrate a violation,
we define the quantum correlation CQ(A,B) by replacing P (A,B; ai, bj) in Eq. (3.11) with
the quantum probability PQ(A,B; ai, bj):

CQ(A,B) =
∑
ij

aibjPQ(A,B; ai, bj) . (3.14)

Alice and Bob measure linear polarizations in the plane of ε1 and ε2, with an angle θAB
between the pass axes of A and B; let the values 1 and −1 correspond to a photon passing
or not passing, respectively. We can obtain CQ(A,B) as follows. Suppose Bob’s measure-
ment yields 1, i.e. his photon passes his polarizer. The photons in each pair are corre-
lated, hence Alice’s photon is polarized parallel to Bob’s. Then from Sect. 3.2 we infer that
the probability that Alice’s photon passes her polarizer is cos2 θAB . By rotational symme-
try, we have PQ(A,B, 1, 1) = (cos2 θAB)/2 = PQ(A,B,−1,−1) and PQ(A,B,−1, 1) =
(sin2 θAB)/2 = PQ(A,B, 1,−1). Then CQ(A,B) = cos2 θAB − sin2 θAB = cos 2θAB . In
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A

A'

B

B'

Figure 3.6: Polarizer pass axes in a test of the CHSH inequality,
Eq. (3.12).

particular, letA,B,A′ andB′ correspond to polarizers with their pass axes in a common plane
and an angle π/8 between the pass axes of A and B, B and A′, and A′ and B′. (See Fig. 3.6.)
We have

CQ(A,B) = CQ(A,B′) = CQ(A′, B) =
√

2
2

= −CQ(A′, B′)

and the sum

CQ(A,B) + CQ(A′, B) + CQ(A,B′) − CQ(A′, B′) = 2
√

2

violates the CHSH inequality, as we set out to demonstrate. Quantum correlations are nonlocal;
they cannot arise from local plans.

An experimental test of the CHSH inequality, by Aspect, Dalibard, and Roger [11], mea-
sured correlations along the polarization axes of Fig. 3.6. The source of the photon pairs was
an atomic cascade. In this experiment, the measurement settings switched pseudorandomly
between A and A′ and between B and B′ in a time short compared to the time of flight of
the photons. The correlations in this experiment were consistent with quantum correlations
and violated the CHSH inequality by five standard deviations. In a more recent experiment
by Wiehs et al. [12] the switching between these measurement settings was truly random and
spacelike separated; the measured correlations violated the CSHS inequality by 30 standard
deviations.

There are many extensions of Bell’s inequality. Greenberg, Horne, and Zeilinger [13]
(GHZ) found a remarkable extension involving three particles. (See Prob. 3.13.) The EPR
paradox arises generically for any entangled state – any state of macroscopically separated
systems that is not a product of states of each system. Any entangled state yields quantum
correlations that violate a generalization of Bell’s inequality [14].

3.5 Paradox and Beyond

The EPR claim assumes that Bob and Alice measure independent physical variables. Einstein,
Podolsky and Rosen never anticipated that this reasonable assumption would prove inconsistent
with experiment, that we cannot quite isolate systems in an entangled state from each other.
But we cannot. As Bell put it, “The reasonable thing just doesn’t work” [15].
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Ironically, the claim that quantum theory is incomplete may well be correct, though not in
the EPR sense. Quantum theory does not explain how we go from probability to observation,
from possibility to actuality, as a complete theory would. There is such a complete theory,
due to Bohm [16]. (See Prob. 9.3.) Bohm’s theory is equivalent to quantum mechanics in
its experimental predictions, but contains additional “hidden” variables that account for the
results of every measurement. In keeping with Bell’s inequality, these hidden variables are not
local; so Einstein, Podolsky and Rosen would not have accepted them. But Bohm’s theory is a
complete quantum theory. Section 18.3 proposes final boundary conditions on the universe as
a way to complete quantum theory. The hidden variables of this complete theory are nonlocal
in time.

Problems

3.1 Consider the EPR paradox of Sect. 3.1. Does a measurement of x1 affect a subsequent
measurement of p2? A measurement of x1 affects the momentum component P of the
measuring device according to the uncertainty relation ∆x1∆P ≥ h. Let m2 and M
denote the masses of particle 2 and of the measuring device, respectively. Let v2 and
V = P/M denote the velocity components of particle 2 and of the measuring device,
relative to a reference frame that does not accelerate during the measurement. Relative
to the measuring device, the momentum of particle 2 is p2 = m2(v2 − V ). Show that
the uncertainty ∆p2 can be arbitrarily small, whatever ∆x1.

∗3.2 (a) Show that a selector for polarization |P〉 does not transmit any light of polarization
|P′〉 if 〈P|P′〉 = 0. (See Sect. 3.2 and Fig. 3.5.)
(b) Show that Eq. (3.2) gives the fraction of light of polarization |P〉 that passes a selector
for polarization |P′〉, and vice versa.

3.3 Let A = |ψ2〉〈ψ1| denote an operator such that A|φ〉 = (〈ψ1|φ〉) |ψ2〉. Show that A is
a linear operator, i.e. that

A(c|φ〉 + c′|φ′〉) = cA|φ〉 + c′A|φ′〉 .

Show that aA is a linear operator, if a is any complex number, and that any sum of linear
operators is a linear operator.

3.4 The adjoint A† of a linear operator A has the property that for any |φ〉 and |φ′〉,

〈φ|A†|φ′〉 = (〈φ′|A|φ〉)∗ .

(a) Show that if A is self-adjoint (or Hermitian), i.e. if A = A†, then the eigenvalues ai
of A are real.
(b) Show that if an operator U is unitary, i.e. U†U = 1, then its eigenvalues have
absolute value 1.
(c) Unitary operators transform among incompatible bases. Show that if a set of vectors
|i〉 is orthonormal, then so is the set of vectors U |i〉.
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3.5 Let A be self-adjoint, with A|φ〉 = a|φ〉 and A|φ′〉 = a′|φ〉. Show that if a = a′, then
〈φ|φ′〉 = 0.

3.6 An experiment to measure the spin component of an electron (along any axis) always
yields �/2 or −�/2, corresponding to two basis vectors for the Hilbert space of electron
spin. Let orthonormal vectors | ↑〉 and | ↓〉 represent states with z-component of spin
equal to �/2 and −�/2, respectively. Any other spin state is a superposition of | ↑〉 and
| ↓〉. Let |u1〉 and |u2〉 be two electron spin states with 〈u1|u2〉 = 0; |u1〉 and |u2〉 are
linear combinations of | ↑〉 and | ↓〉. Show that the entangled state

1√
2

(|u1〉 ⊗ |u2〉 − |u2〉 ⊗ |u1〉)

of two electrons equals the state

1√
2

(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉) (3.15)

up to an overall phase.

3.7 (a) Show that a φ rotation about the z-axis, Eq. (3.7), leaves |Ψ1〉 and |Ψ3〉 of Eqs.
(3.5–6) invariant.
(b) Show that the quantum correlation for two photons in the state |Ψ1〉 of Eq. (3.5)
is CQ(A,B) = − cos 2θAB , where θAB is the angle between the pass axes of linear
polarizers in measurements A and B.

∗3.8 (a) Show that the state |Ψ1〉 in Eq. (3.5) is odd under parity and that the states |Ψ2〉,
|Ψ3〉 and |Ψ4〉 in Eq. (3.6) are even under parity. (Parity reverses the direction of the
propagation vector k of each photon, as well as the polarization direction.)
(b) Show that Eq. (3.15) (in Prob. 3.6) is odd under parity. (Parity reverses the propa-
gation direction of each electron, but not the spin.)

∗3.9 A quantum wave function ψ(x) is a state in an infinite-dimensional Hilbert space. We
denote it |ψ〉. The scalar product of two quantum wave functions ψ1(x), ψ2(x) is
〈ψ1|ψ2〉 ≡ ∫∞

−∞ ψ∗
1(x)ψ2(x)dx. A basis for the Hilbert space may be discrete or

continuous. The basis states |ψi〉 of a discrete basis satisfy 〈ψi|ψj〉 = δij , where
i, j = 1, 2, . . . . The basis states of a continuous basis satisfy an analogous condition,
but with a δ-function in place of δij . For example, δ(x − x0) represents the state of a
particle, in one space dimension, with position x = x0. We denote it |x0〉. We think
of δ(x− x0) as vanishing everywhere outside an arbitrarily small neighborhood of x0.
Formally, we define δ(x− x0) via the integral

∫ b

a

f(x)δ(x− x0)dx ,

which equals f(x0) if a < x0 < b and zero otherwise; f(x) is an arbitrary differentiable
function.
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(a) A common representation of δ(x− x0) is

δ(x− x0) =
1
2π

∫ ∞

−∞
eik(x−x0)dk ;

that is,

∫ b

a

f(x)δ(x− x0)dx =
1
2π

lim
M→∞

∫ b

a

∫ M

−M
f(x)eik(x−x0)dkdx .

Show that the double integral yields f(x0) if a < x0 < b.
(b) Show that x|x0〉 = x0|x0〉 and that 〈xi|xj〉 = δ(xi−xj). In three space dimensions,
δ(x−xi) ≡ δ(x−xi)δ(y− yi)δ(z− zi) represents the state of a particle with position
x = xi, and we denote it |xi〉. Show that 〈xi|xj〉 = δ(xi − xj). These conditions are
continuous analogues of the discrete condition 〈ψi|ψj〉 = δij . In keeping with Sect. 3.3,
we have |〈ψ|x0〉|2 = |ψ(x0)|2 as the probability density, in the state |ψ〉, to find the
particle at a point x0. (It is the probability density, not the probability, because the state
|x0〉 is not normalized, i.e. 〈x0|x0〉 = 1.)
(c) The quantum wave (2π�)−1/2eip0x/� represents the state of a particle, in one space
dimension, with momentum p = p0. (See Eq. (2.4).) We denote it |p0〉. Show that
〈pi|pj〉 = δ(pi − pj). (d) The analogue of Eq. (3.4) for the Hermitian operator p is

p =
∫ ∞

−∞
|p0〉〈p0|p0dp0 .

Show that pψ(x) = −i�dψ(x)/dxwhereψ(x) is any function with a Fourier transform.
Thus −i�d/dx represents the observable p.

3.10 For a given state |Ψ〉 and Hermitian operatorsA,B, let 〈A〉 denote the expectation value

〈Ψ|A|Ψ〉 and ∆A denote the uncertainty ∆A =
(〈A2〉 − 〈A〉2)1/2.

(a) Prove that

A|Ψ〉 = 〈A〉|Ψ〉 + ∆A|ΨA
⊥〉 ,

where |ΨA
⊥〉 is some state orthogonal to |Ψ〉.

(b) Use this result to prove the general uncertainty relation, ∆A∆B ≥ 1
2 |〈[A,B]〉|,

where [A,B] = AB −BA is the commutator of A and B.
(c) Derive ∆x∆p ≥ �/2. (See Prob. 3.9(d).)

∗3.11 Consider two macroscopically separated systems, SA and SB , prepared in an arbitrary
state |Ψ〉. Let A be an observable on SA and B be an observable on SB . Show that
the probability of any result of a measurement of A on SA is independent of which
observable B is measured on SB . (Hint: Compute the probability of the joint result ai
for A and bj for B and obtain the probability of the result ai for A from it by summing
over j.)
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3.12 Rewrite Eq. (3.13) by defining

S(A) =
∑
i

aiP (A; ai;λ) , S(A′) =
∑
i

a′
iP (A′; a′

i;λ) ,

S(B) =
∑
j

bjP (B; bj ;λ) , S(B′) =
∑
j

b′jP (B′; b′j ;λ) ,

and

S = S(A)[S(B) + S(B′)] + S(A′)[S(B) − S(B′)] .

Note that −1 ≤ S(A), S(A′), S(B), S(B′) ≤ 1.
(a) Prove that if S(A), S(A′), S(B) and S(B′) all have absolute value 1, then S2 = 4.
(b) Suppose that S is a maximum for |S(A)| < 1. Prove S2 ≤ 4 using the stationary
condition ∂K/∂S(A) = 0. Prove |S| ≤ 2 in general.

∗3.13 The GHZ state 1√
2

(| ↑〉1 ⊗ | ↑〉2 ⊗ | ↑〉3 − | ↓〉1 ⊗ | ↓〉2 ⊗ | ↓〉3) is a simultaneous ei-

genstate of σ(1)
y σ

(2)
y σ

(3)
x , σ(1)

y σ
(2)
x σ

(3)
y , σ(1)

x σ
(2)
y σ

(3)
y and σ(1)

x σ
(2)
x σ

(3)
x , where the Pauli

spin matrices σ(j)
x , σ

(j)
y act on the j-th state in each product and

σ(j)
x | ↑〉j = | ↓〉j , σ(j)

x | ↓〉j = | ↑〉j ,
σ(j)
y | ↑〉j = i| ↓〉j , σ(j)

y | ↓〉j = −i| ↑〉j .

What is the eigenvalue of each operator on the GHZ state? If the operators σ(1)
x , σ(2)

x ,
σ

(3)
x and σ(1)

y , σ(2)
y , σ(3)

y all have simultaneous (hidden) values, what assignment of -1
or 1 to each is consistent with the quantum results?
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4 Phases and Gauges

Chapter 2 presents thought experiments in which electrons, after passing through a screen
with two slits, display an interference pattern. Einstein claimed that, if we closely observe the
recoil of the screen after each electron passes, we can determine through which slit the electron
passed, and the interference pattern will remain. Bohr, however, insisted that quantum me-
chanics is consistent only if any procedure that reveals through which slit each electron passes
also destroys the interference pattern. Bohr showed that Einstein’s procedure for observing
the recoil of the screen does, indeed, destroy the interference pattern. Since we claim that
quantum mechanics is consistent, we must be able to show that any refinement or modification
of Einstein’s procedure would also destroy the interference pattern. We now describe two
procedures, more sophisticated than Einstein’s, to reveal through which of two slits an electron
passes. Neither seems to destroy the interference pattern.

4.1 Two Paradoxical Procedures

In the first procedure, we put a capacitor next to the screen, halfway between the two slits.
(See Fig. 4.1.) The flat plates of the capacitor are perpendicular to the screen and we assume
that they are initially at rest. The plates, when charged, carry equal and opposite charges; each
plate produces a constant electric field, perpendicular to the plates, but on either side of the
capacitor these fields cancel. Thus, on either side of the capacitor, a passing electron feels no
force. The electric field does fringe at the edges of the plates, but if we charge the capacitor
only during the short time that the electron is on one side or the other of the capacitor, the
electron never encounters this fringe field and never feels any force. However, the electron

Figure 4.1: A two-slit experiment with a charged ca-
pacitor between the slits. An insulated spring keeps
the plates apart.

Quantum Paradoxes: Quantum Theory for the Perplexed. Y. Aharonov and D. Rohrlich
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN 3-527-40391-4
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Figure 4.2: A two-slit experiment with a rotating,
charged cylinder between the slits.

exerts a force on the plates of the capacitor: it repels the negatively charged plate, and attracts
the positively charged plate. So it pulls the plates of the capacitor apart when it passes through
one slit, and presses them together when it passes through the other slit. The behavior of the
plates reveals through which slit the electron passed! But the plates exert no force either on
the electron1 or the screen (which is neutral). How can they affect the interference pattern?

In the second procedure a long cylinder, with a wire along its axis, takes the place of the
flat plates. (See Fig. 4.2.) The wire is fixed in space and the cylinder is free to rotate about
it. The wire and cylinder carry equal and opposite charges, distributed uniformly; outside the
cylinder their electric fields cancel, and once again the electron feels no electric force. The
cylinder, if it rotates, produces a magnetic field that vanishes outside it (like the magnetic field
of a solenoid). So the electron also feels no magnetic force. However, the electron acts upon
the cylinder. The passing electron generates a magnetic field, and the changing magnetic flux
through the cylinder induces an electric field curling around it (by Faraday’s law). This electric
field changes the angular speed of the cylinder, but only briefly: the cylinder rotates freely with
the same angular speed ω before and after the electron passes.

Can we detect the action of the electron? The cylinder has an arrow pointing out from its
axis of rotation; it defines an angular position φ. Suppose we observe the arrow repeatedly
before the electron passes, at times t = 0, T, 2T, . . . , and find it pointing the same direction
each time.2 After the electron passes, we again observe the arrow at a time t = nT , where n is
an integer, and find that the arrow has shifted direction slightly by an angle δφ. A calculation
(Prob. 4.1) shows that δφ is

δφ = ±πrc
2Qe

c2Il
, (4.1)

where rc is the radius of the cylinder,Q is its charge, I is its moment of inertia and l its length.
Equation (4.1) is valid when the minimum distance of the electron from the cylinder is small
compared to l but large compared to rc. The sign of δφ depends on whether the electron passes
to the right or to the left of the cylinder. By Lenz’s law, the angular speed of the cylinder

1The plates of a capacitor conduct, so an image charge in the nearest plate attracts the electron. The attraction is
of order e2 (the electron and its image have charge ±e) hence negligible compared to the force on the plates. We
can remove this attraction by replacing the capacitor with oppositely charged, nonconducting plates; then there is no
image charge. We separate the plates only when the electron is on one side or the other of the plates, so the electron
also never encounters a fringe field.

2We do not thereby measure the angular speed ω, for we do not know how many times the cylinder rotates during
a time T ; we only know that ω must be a multiple of 2π/T . In quantum theory, the angular momentum of a freely
rotating cylinder must be a multiple of �; hence ω must be a multiple of �/I , where I is the moment of inertia of the
cylinder.



4.2 Classical and Quantum Phases 45

changes so as to cancel the magnetic flux due to the electron. The behavior of the cylinder
reveals through which slit the electron passed! Yet the cylinder hardly exerts a force on the
electron or on the screen (if I is large): the electric field due to the changing angular speed of
the cylinder is proportional to 1/I . How can the cylinder affect the interference pattern?

These two thought experiments challenge our claim that quantum mechanics is consistent.
If we cannot show that the procedures destroy the electron’s interference pattern, we must
conclude that quantum mechanics is inconsistent. We have noted the fringing of electric and
magnetic fields. However, in the first procedure we could charge the capacitor plates for a short
time only, while the electron passes near the center of the plates and is far from the edges. In
the second procedure, we can make the cylinder and wire as long as we like. Thus, we really
can neglect fringing. The resolution of this paradox is more subtle and remarkable, requiring
insight into the role of electromagnetic potentials in quantum mechanics.

4.2 Classical and Quantum Phases

Interference is familiar from the classical physics of waves, but there is a fundamental difference
between classical and quantum waves. Typical classical waves are water waves, sound waves
and light waves. Each is defined by variation in space and time of a measurable quantity: the
water level, the density of a gas, the strengths of electric and magnetic fields. These quantities
define not only the length and frequency of a wave, but also its phase. By contrast, nothing that
we can measure defines the phase of a quantum wave. We can measure only phase differences.
When a light wave passes through a screen with two slits, we can determine the phase of each
partial wave emerging from the slits. When an electron passes through a screen with two slits,
we can only determine the relative phase of the two parts of the wave function emerging from
the slits. Mathematically, the quantum wave Ψ(x, t) consists of a modulus n(x, t) and a phase
ϕ(x, t), both real functions of x and t:

Ψ(x, t) = n(x, t)eiϕ(x,t) .

The probability density ρ(x, t) to find the particle at a point x at time t is

ρ(x, t) = |Ψ(x, t)|2 = [n(x, t)]2 .

(See Prob. 3.9(b).) In interference phenomena, two partial quantum waves sum,

Ψ(x, t) = Ψ1(x, t) + Ψ2(x, t) = n1(x, t)eiϕ1(x,t) + n2(x, t)eiϕ2(x,t) ,

and the probability density depends on the relative phase ϕ1(x, t) − ϕ2(x, t):

ρ(x, t) = |n1(x, t)eiϕ1(x,t) + n2(x, t)eiϕ2(x,t)|2
= n2

1 + n2
2 + 2n1n2 cos [ϕ1(x, t) − ϕ2(x, t)] .

Thus the phase of Ψ2(x, t) relative to the phase of Ψ1(x, t) appears directly in the electron’s
interference pattern; it is not arbitrary. On the other hand, the absolute phase of the quantum
wave is arbitrary, in the following sense: if we multiply Ψ(x, t) by an overall complex phase
factor eiλ (with λ real and constant), the probability density does not change:

ρ(x, t) = |eiλΨ(x, t)|2 = |Ψ(x, t)|2 .
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Indeed, in this sense, the absolute phase of a quantum wave at each spacetime point is
arbitrary: if we multiply Ψ(x, t) by an overall complex phase factor eiλ(x,t) (with λ a real
function of x and t) the probability density does not change:

ρ(x, t) = |eiλ(x,t)Ψ(x, t)|2 = |Ψ(x, t)|2 .

We call the transformation

Ψ(x, t) → Ψ′(x, t) = eiλΨ(x, t) (4.2)

with λ constant a global phase transformation and the transformation

Ψ(x, t) → Ψ′(x, t) = eiλ(x,t)Ψ(x, t) (4.3)

a local phase transformation. The probability density is invariant under both. The interference
pattern is invariant under both because, at a given spacetime point (x, t), the same factor
eiλ(x,t) multiplies Ψ1(x, t) and Ψ2(x, t). But some expectation values are not invariant under
local phase transformations. For example, the components of momentum p are represented
by linear (differential) operators −i�∂/∂x, −i�∂/∂y and −i�∂/∂z. (See Prob. 3.9(d).) The
expectation value 〈Ψ|p|Ψ〉 is not invariant under local phase transformations. On the other
hand, all expectation values are invariant under global phase transformations.

4.3 Phase Meets Gauge

The apparent conclusion of the previous section is that a global phase transformation, applied
to a quantum wave, yields an equivalent wave; but a local phase transformation, applied to a
quantum wave, yields (in general) an inequivalent wave. At any one point in spacetime we
can choose the phase of the wave function, but that choice fixes the phase of the wave function
at every other point. Nevertheless, this conclusion is not valid if we include electromagnetic
interactions in quantum mechanics. We will now see that, at least for charged particles, the
quantum phase is arbitrary at every point in spacetime, so two quantum waves related by a
local phase transformation are indeed equivalent.

In classical physics, the electric field E and magnetic field B obey four equations –
Maxwell’s equations – which describe how each field depends on the other and on charges
(including moving charges). A fifth equation – the Lorentz force equation – describes how a
charged particle reacts to electric and magnetic fields. All the quantities appearing in these five
equations are measurable, and there are no other measurable electromagnetic quantities. Even
so, two auxiliary quantities are in common use: a scalar field V (x, t) and a vector field A(x, t),
which together form a four-vector. V and A completely determine E and B according to the
equations3

E = −1
c

∂

∂t
A − ∇V , B = ∇ × A . (4.4)

3We use Gaussian units.
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E and B, however, do not determine V and A. Suppose we modify V and A as follows:

V → V − 1
c

∂

∂t
Λ , A → A + ∇Λ , (4.5)

where Λ(x, t) is any scalar function of space and time. This modification of V and A does
nothing to E and B, according to Eq. (4.4). Since only E and B are directly measurable, the
transformation Eq. (4.5) has no observable consequences, and V and A are to some extent
arbitrary. They are arbitrary in the same way that the quantum phase ϕ(x, t) is arbitrary: at
any spacetime point (x, t), we cannot measure their values. We can only measure (to an extent)
their spacetime dependence. For example, only the difference in V from one point in space to
another has observable consequences; V alone does not. Thus, the transformation Eq. (4.5) is
analogous to a change in the initial reading on a gauge (where the difference between final and
initial readings yields a measurement) and is called a gauge transformation.

If V and A are somewhat arbitrary, why bother with them? One reason is that it may be
simpler to solve Maxwell’s equations for the four auxiliary quantities V and A than for the six
physical quantities E and B. An additional reason is that we may want to obtain the Lorentz
force equation (for a particle of mass m and charge e)

m
d2x
dt2

= eE +
e

c

(
dx
dt

)
× B (4.6)

from a Hamiltonian. E and B cannot appear in the Hamiltonian, for a Hamiltonian containing
E and B would yield an equation of motion containing their derivatives. However, Hamilton’s
equations for a Hamiltonian in which V and A appear,

H =
1

2m

(
p − e

c
A
)2

+ eV , (4.7)

yield the Lorentz force equation, Eq. (4.6). The strongest reason for introducing V and A is
the Hamiltonian itself. The Hamiltonian – the sum of the kinetic and potential energies – is
a conserved quantity. Without the electromagnetic potentials we could not arrive at a notion
of conservation. Still, in classical mechanics we can choose either Eq. (4.7) or Eq. (4.6) as a
starting point.

In quantum mechanics we cannot choose; we must start with a Hamiltonian.4 Any quantum
state |Ψ〉 of a system satisfies the Schrödinger equation i�∂|Ψ〉/∂t = H|Ψ〉, where H is the
Hamiltonian operator for the system. The Schrödinger equation corresponding to Eq. (4.7) is

i�
∂

∂t
Ψ(x, t) =

[
1

2m

(
−i�∇ − e

c
A
)2

+ eV

]
Ψ(x, t) (4.8)

and describes a charged, nonrelativistic quantum particle in a vector potential A and a scalar po-
tential V . Applying the gauge transformation Eq. (4.5), we arrive at a transformed Hamiltonian

4The Hamiltonian is the starting point for both Schrödinger’s equation and Heisenberg’s matrix mechanics. Feyn-
man’s path integral is based on the Lagrangian (in which V and A also appear); but in general the Hamiltonian is
essential for obtaining the correct path integral. (See Sect. 12.3.) Regarding a gauge-invariant form of the Schrödinger
equation, see Prob. 4.2.
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which must describe the same particle in the same magnetic and electric fields:

i�
∂

∂t
Ψ′(x, t) =

[
1

2m

(
−i�∇ − e

c
A − e

c
∇Λ

)2
+ eV − e

c

∂

∂t
Λ
]

Ψ′(x, t) . (4.9)

We have written Ψ(x, t) as the solution of Eq. (4.8) and Ψ′(x, t) as the solution of Eq. (4.9)
because they are not the same wave function. Indeed,

Ψ′(x, t) = eieΛ/�cΨ(x, t) ; (4.10)

we see by substitution that if Ψ(x, t) is a solution of Eq. (4.8), then Ψ′(x, t) is a solution
of Eq. (4.9). Equation (4.10) is a local phase transformation as defined in Eq. (4.3), with
λ(x, t) = eΛ(x, t)/�c. Since Ψ(x, t) and Ψ′(x, t) have the same physical significance, it is
apparent that the local phase transformation Eq. (4.10) does lead to an equivalent wave function,
and that the phase of a quantum wave at any point is arbitrary, since Λ(x, t) is arbitrary.

Thus, what we have called local phase transformations and gauge transformations (also
called gauge transformations of the first and second kind, respectively) go hand in hand. As
noted above, gauge transformations do not affect either probability densities or interference.
What about expectation values? We find that all measurable quantities are gauge invariant;
gauge transformations do not affect their expectation values. For example, the velocity of a
particle with Eq. (4.7) as its Hamiltonian is

d

dt
〈Ψ|x|Ψ〉 =

i

�
〈Ψ|[H,x]|Ψ〉 =

1
m

〈Ψ|
(
p − e

c
A
)

|Ψ〉 ,

and is gauge invariant. (See Prob. 4.4.)

4.4 The Aharonov–Bohm Effect

Quantum mechanics needs V and A in a way that classical physics does not. The scalar
and vector potentials appear in Schrödinger’s equation, in which gauge transformations (of the
potentials) combine with local phase transformations (of the quantum wave). The fact that these
transformations go hand in hand gives the electromagnetic potentials greater significance in
quantum physics than in classical physics. We began this chapter with two thought experiments
involving electric and magnetic fields. We now return to the two experiments and consider the
role of the electromagnetic potentials. We will find that V and A seem to influence the electron
even where the electric and magnetic fields vanish! The first to realize the importance of this
purely quantum effect of electromagnetic potentials, in 1959, were Aharonov and Bohm [1].

In the first experiment, a capacitor lies midway between two passing wave packets of a
single electron.5 Briefly, as they pass, we apply a potential difference to the capacitor. Let the
potential vanish on the left plate of the capacitor and equal V (t) on the right plate, and let V (t)
be zero except when the wave packets pass near the center of the plates. Thus neither wave
packet ever encounters an electric field. (We could just as well let the potential equal −V (t) on
the left plate and vanish on the right plate; all that matters is the potential difference across the

5Section 5.2 presents examples of wave packets.
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plates, and we can never make the potential vanish on both plates.) The wave packet Ψ0
L(x, t)

passing to the left of the capacitor satisfies the Schrödinger equation

i�
∂

∂t
Ψ0
L(x, t) = − �

2

2m
∇2Ψ0

L(x, t) , (4.11)

while the wave packet ΨR(x, t) passing to the right of the capacitor satisfies the Schrödinger
equation

i�
∂

∂t
ΨR(x, t) = − �

2

2m
∇2ΨR(x, t) + eV (t)ΨR(x, t) . (4.12)

Although there is no electric field on either side of the capacitor, we cannot eliminate the scalar
potential from both Eq. (4.11) and Eq. (4.12) because it does not vanish everywhere. We can,
however, write V (t) in Eq. (4.12) as a gauge transform of the zero potential by defining

Λ = −c
∫ t

V (t′)dt′ ,

so that V (t) = −(1/c)∂Λ/∂t. Now suppose Ψ0
R represents the solution of Eq. (4.12) with

V (t) = 0. Then from Eq. (4.10) we obtain immediately

ΨR(x, t) = Ψ0
R(x, t)eieΛ/�c = Ψ0

R(x, t)e−i(e/�)
∫ t V (t′)dt′ .

Thus the potential difference between the plates induces a phase difference between the two
wave packets. If the two wave packets arrive at the capacitor in a superposition (Ψ0

L+Ψ0
R)/

√
2,

they leave the capacitor in the superposition

1√
2

(
Ψ0
L + eieΛ/�cΨ0

R

)
,

and the phase difference between the two wave packets will be observable as a shift in the
lines of the interference pattern from their position when there is no potential difference. Note,
however, that a relative phase of 2π is unobservable because one line merely takes the place
of its neighbor in the interference pattern. (See Prob. 4.7.)

Thus the capacitor shifts the electron’s interference pattern! This remarkable effect depends
on the topology of space. The space available to the electron is not simply connected. The
electron’s paths from the two slits lie on one side or the other of a region where the potential
is not constant in space. Yet along each path, the potential is constant.

In the second experiment, too, the region where the electron can go, where both electric
and magnetic fields vanish, is not simply connected. The electron is forbidden to go into the
cylinder. Although we can choose the scalar potential to vanish outside the cylinder, we cannot,
in general, choose the vector potential A to vanish everywhere outside the cylinder. If it did,
the integral of the vector potential along any closed path around the cylinder,

ΦB =
∮

A · dx ,
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L

R

Figure 4.3: Wave packets overlapping in a space that is not simply
connected.

would vanish. But the integral equals the enclosed magnetic flux ΦB , which is nonzero if the
cylinder rotates.

The topology common to the two experiments leads us to consider, as before, the Schrödin-
ger equation satisfied by two wave packets, ΨL(x, t) and ΨR(x, t), passing through the left and
right slits, respectively. ΨL(x, t) passes the cylinder on the left and satisfies the Schrödinger
equation

i�
∂

∂t
ΨL(x, t) =

1
2m

(
−i�∇ − e

c
A
)2

ΨL(x, t) (4.13)

in the region to the left of the cylinder, while ΨR(x, t) passes the cylinder on the right and
satisfies the Schrödinger equation

i�
∂

∂t
ΨR(x, t) =

1
2m

(
−i�∇ − e

c
A
)2

ΨR(x, t) (4.14)

in the region to the right of the cylinder. The left and right regions overlap where the wave
packets separate and where they recombine. (See Fig. 4.3.) To specify A, it is convenient to
use cylindrical coordinates (r, θ, z) with the axis of the charged cylinder defining the z-axis.6

A possible choice for A in the region outside the cylinder is A = ΦB θ̂/2πr, where θ̂ is a unit
vector is the θ-direction.

For this choice of vector potential, we can write A(x, t) = (ΦB/2π)∇θ, or A = ∇Λ with
Λ = ΦBθ/2π. The coordinate θ increases by 2π with every full turn about the z-axis, and so
Λ must be multivalued in the region outside the cylinder. In this region, then, A = ∇Λ is not
a gauge transform of zero vector potential, because Λ is not a single-valued function of space
and time everywhere outside the cylinder. But the region to the left of the cylinder is simply
connected, and also the region to the right. Within each region, Λ is a single-valued function of
space and time, and A = ∇Λ is a gauge transform of zero. Thus if Ψ0

L represents the solution
to Eq. (4.13) when A = 0, we know from Eqs. (4.8–10) that the solution to Eq. (4.13) for
nonzero A is

ΨL = Ψ0
Le

ieΛ/�c = Ψ0
Le

ieΦBθ/2π�c .

Similarly, if Ψ0
R represents the solution to Eq. (4.14) whenA = 0, then the solution to Eq. (4.14)

for nonzero A is

ΨR = Ψ0
Re

ieΛ/�c = Ψ0
Re

ieΦBθ/2π�c .

6Here for cylindrical coordinates we define r = (x2 + y2)1/2 and θ = arctan(y/x) whereas for spherical
coordinates we define r = (x2 + y2 + z2)1/2, θ = arccos(z/r) and φ = arctan(y/x).
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Suppose that, without a vector potential, the partial waves from the two slits would recombine
in the superposition

1√
2

(
Ψ0
L + Ψ0

R

)
.

Because of the vector potential, they recombine in the superposition

1√
2

(
Ψ0
L + eieΦB/�cΨ0

R

)

(up to an overall phase), since the difference in θ between the two partial waves is 2π. The
vector potential induces a relative phase of magnitude eΦB/�c between the partial waves.
This relative phase shifts the interference pattern by an amount proportional to the flux ΦB .
Again, only the modular part of the phase, eΦB/�c mod 2π, is observable. (See Prob. 4.7.)
A magnetic flux influences the electron’s interference pattern even though the electron does
not pass through any magnetic field! Experiments have confirmed this shift in the interference
pattern [2].

4.5 Quantum Consistency and the Aharonov–Bohm Effect

The Aharonov–Bohm effect is the key to resolving the paradoxes presented at the beginning
of this chapter. It shows us that a capacitor or a solenoid placed between two slits can affect
the interference pattern of an electron diffracting through the two slits. We will now see how
this effect preserves the consistency of quantum mechanics.

In the first paradoxical procedure described in Sect. 4.1, the electron’s path influences
the relative momentum of the two capacitor plates. To detect through which slit the electron
passes, we must be able to measure the relative momentum of the plates to good accuracy. But
the scalar potential between the capacitor plates is proportional to their separation. The more
accurately we measure the relative momentum of the plates, the less accurately we can measure
their relative position, and the more uncertain is the scalar potential between the plates. The
Aharonov–Bohm effect implies that an uncertain scalar potential induces an uncertain relative
phase between two paths passing on opposite sides of the capacitor, washing out the interference
pattern.

This resolution of the paradoxes is qualitatively correct. Is it quantitatively correct, too?
Let us consider how accurately we need to measure the relative momentum of the plates. If pL
and pR represent the momentum of the left and right plates, respectively, we must determine
whether the passing electron increases or decreases their relative momentum pR − pL. (The
charged plates in any case attract one another, but let us assume that we can isolate the change
in pR − pL due to the electron.) The absolute value of the change in pR − pL, then, must be
large compared to ∆(pR − pL), the accuracy with which we can measure pR − pL. It must be
large if we are to be fairly certain about which way the electron went. The change in pR − pL
is the time integral of the force, eE(t), so

|e
∫
dtE(t)| � ∆(pR − pL) .
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The relative phase between paths of the electron is (e/�)
∫
dtV (t), where V (t) is the potential

difference between the two plates at time t; V (t) is proportional to the separation xR − xL of
the plates:

V (t) = E(t)(xR − xL) .

The uncertainty in V (t) is at least |E(t)|∆(xR − xL), so the phase uncertainty is at least

∆(phase) = (e/�)|
∫
dtE(t)|∆(xR − xL) � ∆(pR − pL)∆(xR − xL)/� .

We now apply a form of Heisenberg’s uncertainty relation. (See Sect. 2.3.) Prob. 3.10 presents
the following theorem:

∆A∆B ≥ 1
2

|〈[A,B]〉| , (4.15)

where A and B are any two Hermitian operators. Since [xR − xL, pR − pL] = [xR, pR] +
[xL, pL] = 2i�, we have ∆(phase) � ∆(pR − pL)∆(xR − xL)/� ≥ 1. Thus the uncertainty
in the phase is large compared to 1 and washes out the interference pattern.

The Aharonov–Bohm effect applies in a similar way to the second paradoxical procedure.
To detect which way the electron went, we must measure δφ, the change in the angular position
of the cylinder. The sign of δφ tells us which way the electron went; hence the uncertainty in
φ must not be greater than δφ. Equation (4.1) then implies

∆φ � πrc
2Qe

c2Il
. (4.16)

On the other hand, the rotating cylinder produces a flux ΦB

ΦB = 2πrc2QLz/Ilc , (4.17)

whereLz is the angular momentum of the cylinder. In accord with the Aharonov–Bohm effect,
it yields an electron phase of (e/�c)(2πrc2QLz/Ilc). The uncertainty in this phase is at least

∆(phase) ≥ 2πrc2eQ(∆Lz)/�Ilc2 . (4.18)

The commutator of φ and Lz is [φ,Lz] = i�. (See Prob. 4.8.) Then Prob. 3.10 implies that
∆Lz∆φ ≥ �/2, and from Eqs. (4.16) and (4.18) we again obtain ∆(phase) � 1. So here,
too, detecting though which slit the electron went destroys the electron interference.7

We see that the Aharonov–Bohm effect is crucial to the consistency of quantum mechanics.
Indeed, after Aharonov and Bohm predicted the effect, and while their prediction was still
controversial, Furry and Ramsey [3] formulated paradoxes similar to those of Sect. 4.1 and
applied the Aharonov–Bohm effect to resolve them, to show that the effect was not only correct,
but necessary for consistency.

7An application of modular variables shows that the phase uncertainty in both procedures is actually 2π. See
Prob. 5.3.
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We close this section with a comment on the interpretation of the AB effect. Electromag-
netic potentials have a significance in quantum theory that they lack in classical theory. We
might conclude that in classical theory, E and B are the only physical variables, whereas in
quantum theory, A and V are physical variables as well. But in quantum theory, as in classical
theory, only gauge-invariant quantities (such as the total flux enclosed by two paths, or a dif-
ference in scalar potential) have physical meaning. Measurable quantities are gauge-invariant.
We cannot measure V and A themselves. To define them to be physical variables contradicts
the demand (in Chap. 7) for the closest possible correspondence between what theory describes
and what we can measure. (Of course, V and A are physical in that they appear in physical
equations, but they are not measurable.) Thus, instead of concluding that A and V are physical
variables in quantum mechanics, we state a conclusion that later chapters develop: Only E and
B are physical quantities, but they act nonlocally – a magnetic field here has physical effects
on electrons there, and so on. Such action at a distance by a field is completely nonclassical.

4.6 Flux Quantization

As a simple application of the Aharonov–Bohm effect, let us consider the energy of a particle
of charge q and mass M moving on a unit circle, when the circle encloses a solenoid. The
particle has a single degree of freedom, its angular position on the circle, which we denote θ.
The solenoid contains a magnetic flux ΦB , but the particle never encounters a magnetic field;
the field vanishes on the circle. We obtain the energiesEn and corresponding basis states |ψn〉
of the particle from the eigenvalue equation

H|ψn〉 = En|ψn〉 ,

where the Hamiltonian, Eq. (4.7), reduces to

H =
1

2M

(
pθ − q

c
Aθ

)2
=

1
2M

(
−i� ∂

∂θ
− q

c

ΦB
2π

)2

in the gauge and cylindrical coordinates of Sect. 4.4. The solutions are

ψn(θ) =
1√
2π
einθ

where n is an integer; the eigenstates |ψn〉 form an orthonormal basis. The corresponding
eigenvalues are En = (n� − qΦB/2πc)2/2M . Any other state of the particle is a linear
combination of these basis states.8

What is striking is that the energiesEn = (n�− qΦB/2πc)2/2M depend on the magnetic
flux through the circle, even though the particle on the circle never encounters the flux. The
ground-state (lowest) energy of the particle is (n0� − qΦB/2πc)2/2M , wheren0 is the integer
nearest to qΦB/hc; it is positive unless ΦB is a multiple of hc/q.

A more realistic Hamiltonian for a charged particle contains additional degrees of freedom,
and potential as well as kinetic energy operators; hence the eigenstates are more complicated,

8The states |ψn〉 are also eigenstates of angular momentum pθ with eigenvalues n�.
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and the corresponding eigenvalues contain additional kinetic and potential energy terms. But
the eigenvalues still depend periodically on the flux, and this dependence has experimental
consequences. One consequence is the quantization of flux in a superconducting ring [4].
Experiments show that the flux through a cylindrical superconductor is quantized in multiples
of ΦB = hc/2e. At first, these experiments seem to contradict our assumption that we can
impose an arbitrary flux ΦB in the region inaccessible to the charged particle. But what happens
is that the imposed flux induces surface currents in the superconductor, circulating around the
inaccessible region. These currents round off the imposed flux to a multiple of hc/2e and
thereby lower the average ground-state energy of all the particles. (The flux is quantized in
multiples of hc/2e because in a superconductor the effective particles are pairs of electrons,
with charge q = 2e.)

4.7 Magnetoresistance

Figure 4.4 shows two wires, of resistances R+ and R−, connected in parallel. The familiar
formula 1/R = 1/R+ + 1/R− implies that the resistance R between the two leads in Fig. 4.4
depends only on R+ and R−. Yet the topology of Fig. 4.4 is the topology of the two-slit
experiment of Fig. 2.3: two electron paths make a closed loop. Could electrons in the two
wires interfere, like electrons in the two slits? Perhaps the resistance between the leads depends
on interference – destructive interference increases, and constructive interference decreases,
the resistance.

To answer this question, we must consider more than topology. Electrons pass through the
thought experiment of Fig. 2.3 one at a time, while the electrons in Fig. 4.4 scatter off each other
and off atoms in the conductor. Inelastic scattering changes the energy, and thus the wavelength,
of electrons in a conductor; then the spread in the wavelengths of the electrons washes out
interference. Elastic scattering, however, does not change the energy of the electrons. It may
change the phase of the electrons, but the change is the same for all electrons in the same state.
(See Prob. 6.1 for an example of elastic scattering off a wall.) If scattering of at least some
electrons in the wires is elastic, the interference should not all wash out.

The pattern of constructive and destructive interference in the two-slit experiment is pre-
dictable. It is not so easy to predict how the resistance of the loop in Fig. 4.4 should depend on
the interference of the electrons in the two wires; we can, however, predict that the resistance
must be periodic in the relative phase of the electrons. In particular, if the resistance depends
on the magnetic flux through the loop, the dependence must be periodic with period hc/e, just
as the dependence of the Aharonov–Bohm phase on flux is periodic with period hc/e. This

R R

Figure 4.4: Two wires, with resistances R+ and R−, connected in
parallel to two leads.
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(a)

(b)

Figure 4.5: (a) Transmission electron micrograph
of a ring of diameter 820 nm, made of gold wire
40 nm wide, from the experiment of Ref. 5. The
leads allow joint measurements of potential dif-
ference and current. (Reprinted, with permission,
from S. Washburn and R. A. Webb, Adv. Phys.
35 (1986) 375; C. P. Umbach fabricated the ring.)
(b) Resistance oscillations, with period 75.9 gauss,
measured on the gold ring. Multiplied by the area
of the loop, 0.53 µm2, the period is 4.0 × 10−7

maxwells (i.e. 4.0 × 10−7 gauss cm2), agreeing
well with hc/e = 4.1 × 10−7 maxwells.

prediction is exact if the flux does not touch the wires; and if the flux touches the wires, but
the loop is much wider than the wires, we can still predict approximate periodicity.

The first demonstration of electron interference in a conducting loop was a 1985 experiment
[5] on tiny gold loops (less than 1 micron in diameter) cooled to a temperature of 0.01 K (to
minimize inelastic scattering). Figure 4.5(a) shows a photograph of one of the gold loops, and
Fig. 4.5(b) shows the resistance of the loop as a function of magnetic field. The amplitude of
the oscillations was only 0.1% of the total resistance, but the period of the oscillations times the
area of the loop yielded hc/e to within the accuracy of the area measurement. This landmark
demonstration of quantum phases at “mesoscopic” distances (some 10,000 times larger than
atomic distances) was an application of the Aharonov–Bohm effect.

4.8 Non-Abelian Phases

In 1954, Yang and Mills [6] generalized the way gauges and phases transform together in the
Schrödinger equation. Their generalization is an important part of elementary particle physics
and other branches of physics. In the Yang-Mills construction, a wave function is a complex
vector defined at each point in spacetime (rather than a complex number). We can write the
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wave function as a column vector with N entries, each a complex function of x and t:

Ψ(x, t) =




Ψ1(x, t)

Ψ2(x, t)

Ψ3(x, t)

. . .

ΨN (x, t)




. (4.19)

While before we considered multiplying Ψ(x, t) by an arbitrary phase, now we may consider
multiplying Ψ(x, t) by an arbitrary unitary matrix. Why unitary? The modulus of the complex
wave function, |Ψ(x, t)|, is invariant under a change of phase. The norm of the complex vector
Eq. (4.19), namely the square root of

|Ψ(x, t)|2 ≡ |Ψ1(x, t)|2 + |Ψ2(x, t)|2 + · · · + |ΨN (x, t)|2 ,
is invariant under multiplication of Ψ(x, t) by an arbitrary unitary matrix U : |UΨ(x, t)| =
|Ψ(x, t)|.

The vector and scalar potentials appearing in the Schrödinger equation will now be matrices
rather than complex numbers. Like all operators representing quantum observables, they will
be Hermitian matrices. Let the transformed wave function be Ψ′(x, t) = UΨ(x, t), where
Ψ(x, t) satisfies the Schrödinger equation

i�
∂

∂t
Ψ(x, t) =

(
−i�∇ − e

c
A
)2

Ψ(x, t) + eV(x)Ψ(x, t) .

Then

i�
∂

∂t
U−1Ψ′(x, t) =

(
−i�∇ − e

c
A
)2
U−1Ψ′(x, t) + eV(x)U−1Ψ′(x, t) .

Multiplying both sides by U , we obtain, after a little algebra,

i�
∂

∂t
Ψ′(x, t) = (−i�∇ − e

c
UAU−1 − i�U∇U−1)2Ψ′(x, t)

+ eUVU−1Ψ′(x, t) − i�U
∂

∂t
U−1Ψ′(x, t)

as the Schrödinger equation satisfied by Ψ′(x, t). Here, too, a transformation in the potentials
A and V goes together with a transformation Ψ(x, t) → Ψ′(x, t); but this time, the gauge
transformation is

A → UAU−1 + i
�c

e
U∇U−1 , V → UVU−1 − i

�

e
U
∂

∂t
U−1 . (4.20)

The gauge transformations Eqs. (4.5) and (4.20) are similar, since every unitary matrix U can
be written as the exponential of a Hermitian matrix λ times i:

U = eiλ .
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Written this way,U is the direct generalization of the phase transformation eiλ(x,t) in Eq. (4.3).
Indeed, λ(x, t) in Eq. (4.3) can be regarded as a 1-dimensional Hermitian matrix, so that the
transformations Eq. (4.5) are the simplest version of Eq. (4.20). The field A and others
constructed from them are known as Yang-Mills fields. Since Hermitian matrices do not
commute, in general, fields that transform according to the generalized gauge transformations
Eq. (4.20) are also called non-abelian gauge fields, after the mathematician Abel, who studied
commutative algebras. Now two wave packets of a particle can differ by a relative non-abelian
phase, even if the non-abelian gauge field vanishes everywhere the wave packets are nonzero;
that is, a non-abelian gauge field can produce a non-abelian Aharonov–Bohm effect [7]. Non-
abelian gauge fields appear in nature; fields transforming according to Eq. (4.20) and built out
of 2×2 and 3×3 matrices describe, respectively, the electroweak and the strong nuclear forces.
And Sect. 12.2 shows how non-abelian phases can arise even in simple quantum systems.

Problems

4.1 Consider the rotating cylinder in Sect. 4.1 centered at the origin, with its axis along
the z-axis. An electron moves in the xy-plane with coordinates (x0, vt, 0) so that its
closest approach to the origin is x0 � rc. Use the law of Biot and Savart to show that
Bz(0, 0, z, t), the z-component of the magnetic field at the point (0, 0, z) at time t, is

Bz(0, 0, z, t) = − vx0e

c(x2
0 + v2t2 + z2)3/2

.

Use Faraday’s law to show that the resulting torque on the cylinder is

I
d2φ

dt2
= −Qrc

2

2ch

∫ l/2

−l/2
dz

∂

∂t
Bz(0, 0, z, t)

and obtain Eq. (4.1) in the approximation x0 � l.

∗4.2 It is possible to rewrite the Schrödinger equation, Eq. (4.8), so that only the gauge-
invariant probability density ρ

ρ(x, t) ≡ |Ψ(x, t)|2

and probability current J

J ≡ 1
2m

Ψ∗(−i�∇ − e

c
A)Ψ +

1
2m

Ψ(i�∇ − e

c
A)Ψ∗

appear [8]. (a) Show that Eq. (4.8) implies these two equations:

∂ρ

∂t
+ ∇ · J = 0 , (4.21)

and

∂

∂t

(
mJ
ρ

)
= ∇

[
�

2

4mρ
∇2ρ− �

2

8mρ2 (∇ρ)2 − mJ2

2ρ2

]
+ eE . (4.22)
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(b) Show that B = −∇ × (mcJ/ρe).
(c) Apparently, we have transformed the Schrödinger equation into two gauge-invariant
equations, Eqs. (4.21–22). Now consider an initial wave function Ψ(x, 0) that vanishes
for all x outside two disjoint regions. Show that ρ(x, 0), J(x, 0) and Eqs. (4.21–22) do
not determine Ψ(x, t) for all times t > 0.

4.3 (a) Consider the gauge choices Ax = 0 = Az , Ay = Bx and Ay = 0 = Az , Ax =
−By. Show that both correspond to a constant magnetic field of strength B along the
z-axis, and that canonical momentum p = mv−eA/c depends on the choice of gauge.
(b) Show that Hamilton’s equation of motion for Eq. (4.7) imply Eq. (4.6), and that the
quantities appearing in Eq. (4.6) are measurable and gauge invariant.

4.4 Prove that

d

dt
〈Ψ|A|Ψ〉 =

i

�
〈Ψ|[H,A]|Ψ〉 + 〈Ψ|∂A

∂t
|Ψ〉 ,

where |Ψ〉 satisfies the Schrödinger equation, i�∂|Ψ〉/∂t = H|Ψ〉. (If A does not
depend explicitly on time, ∂A/∂t vanishes.) Take H = p2/2m + V (x, t) and prove
Ehrenfest’s theorem:

d〈x〉
dt

=
〈p〉
m

,
d〈p〉
dt

=
〈

−∂V

∂x

〉
,

where 〈A〉 ≡ 〈Ψ|A|Ψ〉. Thus expectation values follow classical equations of motion.

4.5 Show that A(x, t) = Φ∇θ/2π is an appropriate vector potential for the region out-
side a solenoid or a rotating, charged cylinder, where Φ is the enclosed flux and
θ = arctan (y/x).

4.6 Find a Lorentz-invariant expression for the Aharonov–Bohm phase that reduces to the
scalar (electric) Aharonov–Bohm phase when the vector potential vanishes, and to the
vector (magnetic) Aharonov–Bohm phase when the scalar potential vanishes.

4.7 Show that the phase factor eieΛ/�c in the Aharonov–Bohm effect depends on Λ only
through its modular part Λ mod hc/e, and likewise eieΦB/�c depends on ΦB only
through ΦB mod hc/e. (By definition, X mod hc/e = X − nhc/e for some integer n,
and 0 ≤ X mod hc/e < hc/e.)

4.8 Applying the definition Lz = xpy − ypx to the operators x and p = −i�∇, derive the
operator Lz = −i�∂/∂φ in spherical coordinates.

∗4.9 Both p → −i�∂/∂x and x → i�∂/∂p represent the commutation relation [x, p] = i�.
If in the former case the Schrödinger equation is

i�
∂

∂t
Ψ(x, t) =

[
− �

2

2m
∂2

∂x2 + V (x)
]

Ψ(x, t) ,
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where V (x) is a polynomial in x, in the latter case it is

i�
∂

∂t
Ψ̃(p, t) =

[
p2

2m
+ V

(
i�
∂

∂p

)]
Ψ̃(p, t) ,

where Ψ̃(p, t) is the Fourier transform of Ψ(x, t). (a) How must i�∂/∂p transform
for the latter Schrödinger equation to be invariant under multiplication of Ψ̃(p, t) by a
p-dependent phase?
(b) What physical principle would this invariance violate?

4.10 The field Fjk corresponding to a vector potential A is

Fjk = ∂jAk − ∂kAj − ie

�c
[Aj ,Ak] .

(In electromagnetism, A is abelian and the commutator vanishes.) Show that F is gauge
covariant, i.e. that the gauge transformation Eq. (4.20) implies

Fjk → UFjkU−1 .
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[5] R. A. Webb, S. Washburn, C. P. Umbach and R. B. Laibowitz, Phys. Rev. Lett. 54 (1985) 2696.
[6] C. N. Yang and R. L. Mills, Phys. Rev. 96 (1954) 191.
[7] D. Wisnivesky and Y. Aharonov, Ann. Phys. 45 (1967) 479; T. T. Wu and C. N. Yang, Phys. Rev.

D12 (1975) 3845.
[8] E. Madelung, Z. Phys. 40 (1926) 322; L. Jánossy, Z. Phys. 169 (1962) 79; G. Casati and I. Guarneri,

Phys. Rev. Lett. 42 (1979) 1579.



This Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left Blank



5 Modular Variables

Previous chapters show a close relationship between quantum interference and the uncertainty
principle. The uncertainty principle implies loss of quantum interference whenever we can de-
tect through which slit a particle passes. (See Sects. 2.4 and 4.5.) Nevertheless, the relationship
between interference and the uncertainty principle remains obscure. For example, consider
partial quantum waves (of a single particle) emerging from two slits. The partial waves do not
yet overlap as they emerge from the slits. If we detect through which slit the particle passes,
we decrease the uncertainty in the particle’s transverse position. A natural guess, based on the
uncertainty relation, Eq. (2.5), is that we increase the uncertainty in the particle’s transverse
momentum. But a simple calculation (Prob. 5.1) shows that the uncertainty in the transverse
momentum does not change. Why, then, does the interference pattern disappear? We have
analyzed several detection schemes and each time applied the uncertainty principle to the de-
tector to explain the loss of interference; but applying the uncertainty principle to the particle
tells us nothing about loss of interference.

Another example of the obscure relation between interference and the uncertainty principle
is the Heisenberg formulation of quantum mechanics. The Heisenberg formalism (in which
operators evolve in time and states do not) is equivalent to the Schrödinger formalism; the
Heisenberg uncertainty principle falls naturally out of both formulations. Yet how can we
think about interference in the Heisenberg formalism? Without wave packets that evolve in
time, it seems impossible.

These examples suggest that we have not learned to think intuitively about interference.
Relativity theory introduced an intuitive language for describing space and time, but in quantum
theory we still describe interference as if the interfering waves were classical. This chapter
introduces a new language for describing quantum interference. We begin with a paradox
involving a lattice of solenoids. The solution to this paradox will give us new intuition about
both interference and quantum nonlocality.

5.1 A Lattice of Solenoids

Consider electrons of wavelength λ diffracting through a heavy grating, as shown in Fig. 5.1;
the grating consists of narrow slits, spaced a distance L apart, formed by parallel slats. The
electrons scatter into discrete directions defined by angles θn (n an integer):

sin θn = nλ/L ;

in these directions the partial electron waves interfere constructively. Because the grating is
heavy, the energy of the electrons is practically the same before and after diffraction; hence their
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Figure 5.1: Electron diffracting through a grating at
an angle θn where sin θn = nλ/L. Electron paths
differing in length by nλ interfere constructively.

momentum p = h/λ and wavelength remain the same, according to the de Broglie relation,
Eq. (2.4). If the incident electrons move parallel to the y-axis and diffract in the xy-plane, the
transverse momentum px of an electron scattered through an angle θn is

px = p sin θn = nh/L . (5.1)

Assuming the grating is free to move in the x-direction, the x-component of momentum is
conserved during diffraction, and the grating acquires momentum nh/L in the x-direction
from the electron. Note that the electron and grating exchange transverse momentum only in
multiples of h/L. We can derive this constraint also from a perturbative calculation. Let Ψ
and Ψ′ be initial and final electron states of momenta �kx and �k′

x, respectively. To first order
in the perturbation, the transition probability from Ψ to Ψ′ is proportional to

〈Ψ′|V |Ψ〉 �
∫ ∞

−∞
ei(kx−k′

x)xV (x)dx ,

where V (x) is the perturbing potential. This integral is just the Fourier transform of V (x) with
respect to x. If (like the grating) V (x) is periodic in x with period L, the integral vanishes
unless �(k′

x − kx) = nh/L.
Let us now modify the experiment [1]. Suppose that each slat in the grating is hollow,

and inside each slat we place a solenoid. The solenoids are rigidly connected to one another,
forming a lattice. (See Fig. 5.2.) Imagine the ends of each slat open and all the solenoids
connected above and below by a rod, while short plates connect the slats above and below. Yet
the solenoids are not connected to the grating, so the lattice of solenoids moves independently
of the grating (except for the constraint that the solenoids must stay inside the slats). As we
saw in Sect. 4.4, a solenoid carrying a flux ΦB contributes eΦB/�c to the relative phase of
partial waves passing on either side of it. If all the solenoids carry the same flux ΦB , then
electrons, after passing the grating, will scatter into a new set of angles θ′

n defined by

sin θ′
n =

(
n+

eΦB
2π�c

)
λ/L . (5.2)

For example, if the extra phase due to the solenoids is eΦB/�c = π, then the pattern of lines
of constructive interference will be shifted by half the separation between neighboring lines.
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x

L Figure 5.2: A lattice of solenoids confined by a grat-
ing.

Constructive interference now corresponds to a change in the electrons’ transverse momentum
of

px = p sin θ′
n =

(
n+

1
2

)
h/L .

(See Fig. 5.3.) Since diffraction of the electrons conserves total transverse momentum, we
might assume that the grating, again, picks up the transverse momentum lost by the electrons.
But, once again, the electrons and grating exchange transverse momentum only in multiples
of h/L. We obtained this constraint from a perturbative calculation with the same interaction
between the electrons and the grating. Therefore, the solenoids must absorb ±h/2L of the
transverse momentum carried by the electrons, even though there is never any contact between
the solenoids and the electrons. We can be sure that there is no contact between the solenoids
and the electrons, because we have placed the solenoids within the hollow slats of the grating.

Here, as in Sect. 4.1, we can arrange for the electric and magnetic fields of each solenoid to
vanish wherever the electrons go. Thus the electrons and solenoids must exchange momentum
nonlocally. A startling effect! But could we ever observe this effect? The fact that the solenoids

L

x

e-

}

Figure 5.3: Electrons diffracting through the grating
and lattice of solenoids of Fig. 5.2 at angles θ′

n where
sin θ′

n = (n + 1/2)λ/L. Each solenoid contains
flux hc/2e; thus electron paths differing in length by
(n+ 1/2)λ interfere constructively.
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must remain inside the slats implies that the uncertainty in their transverse position is less than
L. For ∆x strictly less than or equal to L, the uncertainty in px is ∆px ≥ h/L. (See Prob.
5.3.) Consequently, the uncertainty in their transverse momentum cannot be less than h/L, and
there is no possibility of detecting a change in the solenoid momentum of ±h/2L. Nonlocal
exchange of momentum is apparently an unobservable (hence less than startling) effect.

Yet there is something wrong with this argument. If we send one electron through the
grating, the transverse momentum of the solenoids must change by at least h/2L in absolute
magnitude; suppose it does not change by more than that. So the solenoids pick up transverse
momentum ±h/2L. We cannot detect such a small exchange. But let us send another electron
through the grating. This electron interacts with the grating and the solenoids in the same way;
once again, the solenoids pick up transverse momentum ±h/2L. We send in a third electron;
the solenoids pick up another ±h/2L of transverse momentum. There is no reason why all
these contributions to the transverse momentum of the solenoids should add with the same
sign. But there is no reason why they should all exactly cancel. Indeed, the contributions of
the electrons to the transverse momentum should be like steps in a one-dimensional random
walk: each step is equal in size but random in direction, like the steps of a drunk who has
forgotten where he is going. AfterN such steps the net displacement will most likely be ±√

N
times the step size. Thus, after we sendN electrons through the grating, the solenoids are likely
to pick up ±√

Nh/2L (or more) in transverse momentum! The uncertainty principle cannot
prevent us from observing this nonlocal exchange of momentum, which can be arbitrarily large.

The effect is not only startling, it is paradoxical. It contradicts both experiment and theory.
It is paradoxical for solenoids to accelerate without any forces acting on them; if such an
effect exists in quantum physics, then the correspondence principle implies it should exist in
classical physics as well.1 We can ignore this paradox if we cannot observe nonlocal exchanges
of momentum, but we cannot ignore what we can observe. If nonlocal exchanges of momentum
between electrons and solenoids accumulate like steps in a random walk, then they must be
observable, because a random walk diverges. We might question whether the electrons and
grating can indeed exchange transverse momentum only in multiples ofh/L, since we obtained
this constraint by treating the grating to first order as a perturbation. However, there is a simple,
exact proof of the constraint. (See Prob. 5.5.)

We close this section with a hint towards solving this paradox. A random walk on a line
diverges. A random walk on a circle does not. No point on a circle is farther than half the
circumference from any other point. This observation may seem irrelevant, because electrons
and solenoids exchange momentum, an unbounded quantity, while a circle corresponds to a
bounded and periodic quantity, such as an angle. Yet (from Sect. 4.4) what counts in the
Aharonov–Bohm effect is the modular part of the phase, e.g. eΦB/�c mod 2π. (See Prob.
4.7.) If the solenoids in the lattice all carry flux ΦB , the transverse momentum of an electron
scattered through an angle θ′

n is (from Eq. (5.2))

px = p sin θ′
n =

(
n+

eΦB
2π�c

)
h/L .

1According to Bohr’s correspondence principle, the predictions of quantum physics and classical physics must
correspond in the limit of many quanta.
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Since the grating can pick up transverse momentum in multiples of h/L only, the lattice of
solenoids must absorb some transverse momentum, too. All we can determine, however, is
the modular part of the transverse momentum they absorb, i.e. (n+ eΦB/2π�c) (h/L) mod
h/L. How does this quantity accumulate as the electrons diffract?

5.2 Non-overlapping Wave Packets

Section 4.2 discusses interference between two partial quantum waves Ψ1(x, t) and Ψ2(x, t).
It states that the interference pattern is invariant under a local phase transformation eiλ(x,t)

because, at a given spacetime point (x, t), the same factor eiλ(x,t) multiplies Ψ1(x, t) and
Ψ2(x, t). This statement assumes (implicitly) that interference requires the two partial waves
to meet or overlap at a spacetime point. Let us look closer at this assumption.

A partial wave emerging from a slit is localized in space. We can describe such a localized
wave as a wave packet, i.e. a superposition of waves of different wavelengths. Two kinds of
wave packets are of special interest. One is the standard minimal uncertainty wave packet (in
one space dimension), the gaussian function

ψg(x) =
e−x2/2a2

eikx

(πa2)1/4
, (5.3)

peaked at x = 0, for which ∆x = a/
√

2 and ∆p = �/
√

2a. (See Prob. 3.10 for the definition
of ∆x and ∆p.) This wave packet does not vanish for any x, but it decays exponentially in x.
It is relatively easy to handle mathematically; the Schrödinger equation for a free particle of
mass m on a line,

i�
∂

∂t
Ψ(x, t) = − �

2

2m
∂2

∂x2 Ψ(x, t)

has an exact solution coinciding with ψg(x) at t = 0:

Ψ(x, t) =
e−i�k2t/2m+ikxe−(x−�kt/m)2/2(a2+i�t/m)

π1/4 (a+ i�t/ma)1/2
. (5.4)

Equation (5.4) describes a wave packet peaked at x = �kt/m; i.e. the wave travels at average
speed p/m = �k/m. Another kind of wave packet is the test function ψt(x); it equals

ψt(x) =

{
e−1/(a2−x2) if |x| ≤ a;
0 if |x| ≥ a,

(5.5)

up to normalization. (See Fig. 5.4.)
Like the minimal uncertainty wave packet, the test function is continuous, and has con-

tinuous derivatives of all orders. It has a well-defined Fourier transform. However, since its
derivatives vanish for |x| ≥ a, it does not have a Taylor expansion there; unlike the mini-
mal uncertainty wave packet, it is not analytic. (As a function of complex x, it has essential
singularities.) Non-analytic functions are worth considering. Indeed, we cannot describe the
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Figure 5.4: The test function of Eq. (5.5), with a = 1.

world without them. Relativistic causality states that a cause at one spacetime point can have
no measurable effect at another spacetime point, until a time equal to their spatial separation
divided by the speed of light c has elapsed. If we change a quantum wave at one spacetime
point, the rest of the wave cannot change instantly, so the entire wave function cannot have a
Taylor expansion. Thus relativistic causality is incompatible with complete analyticity.

Now consider two wave packets, ψ1 and ψ2, on the x-axis. With these two wave packets
let us define (up to normalization) a class of wave functions Ψα,

Ψα = ψ1 + eiαψ2 ,

whereα is a constant. The overall phase is unmeasurable, thusψ1+eiαψ2 and e−iαψ1+ψ2 are
equivalent. But if two phase factors eiα and eiβ are different, then Ψα and Ψβ are physically
different. If ψ1 and ψ2 overlap and interfere (and they will as Ψα evolves) the resulting
interference pattern depends on the relative phase α. Nevertheless, as long as they do not
overlap, the relative phase α affects neither the probability density nor the current density. Of
course, ifψ1 andψ2 are minimal uncertainty wave packets, they always overlap to some extent.
Strictly speaking, two wave packets ψ1 and ψ2 do not overlap only if they have no common
support. For example, let ψ1 be the test function of Eq. (5.5) centered at x = 0 and let ψ2 be
the test function centered at x = L with L > 2a. (See Fig. 5.5.) Then ψ1 and ψ2 are strictly
non-overlapping.

We now prove a fundamental theorem about interference: If Ψα(x, 0) = ψ1 + eiαψ2

x

2(x)

L

1(x)

Figure 5.5: Two non-overlapping wave packets on
the x-axis.



5.3 Modular Momentum 67

evolves freely and ψ1(x) and ψ2(x) do not overlap, then
∫ ∞

−∞
Ψ∗
α(x, t)xjpkΨα(x, t)dx (5.6)

is independent of α for all t and for all j and k. In Eq. (5.6), p is the operator −i�∂/∂x; thus
ψ∗

1 and xjpkψ2 do not overlap, and neither do ψ∗
2 and xjpkψ1. We have proved the theorem

for t = 0, because if ψ1 and ψ2 do not overlap, then Ψ∗
αΨα does not depend on α, and neither

does Ψ∗
αx

jpkΨα. To extend the theorem to all t, we define a unitary operator U(t) such that

Ψα(x, t) = U(t)Ψα(x, 0) = e−ip2t/2m�Ψα(x, 0) ;

then Ψα(x, t) solves the free Schrödinger equation and the integrand is

Ψ∗
α(x, t)xjpkΨα(x, t) = Ψ∗

α(x, 0)U†(t)xjpkU(t)Ψα(x, 0)
= Ψ∗

α(x, 0)[U†(t)xU(t)]j [U†(t)pU(t)]kΨα(x, 0)
= Ψ∗

α(x, 0)[x+ pt/m]jpkΨα(x, 0)

which again does not depend on α.

5.3 Modular Momentum

Interference of two wave packets ψ1 and ψ2 reveals their relative phase α, but the wave packets
must overlap to interfere, as Sect. 4.2 assumes. And from the theorem in the last section, we
learn that the expectation values of operators of the form xjpk depend on the relative phase
only if the wave packets overlap. It looks as if no physical observable reveals the relative phase,
as long as the wave packets ψ1 and ψ2 do not overlap. Yet consider the operator eipL/�. In
general,

eipL/�f(x) = f(x+ L) (5.7)

for any function f(x) with a Fourier transform. If Ψα consists of two wave packets separated
by a distanceL, then eipL/� brings them together. For example, if Ψα is the normalized sum of
ψt(x) and eiαψt(x− L), then the expectation value 〈Ψα|eipL/�|Ψα〉 is simply eiα/2. While
eipL/� is not a self-adjoint operator, eipL/� + e−ipL/� is; its expectation value is cosα.

Clearly, cosα depends on α. But suppose we expand eipL/� + e−ipL/� = 2 cos(pL/�) in
powers of p: we have

cos(pL/�) = 1 − (pL/�)2

2!
+

(pL/�)4

4!
− . . . .

We might claim

〈cos(pL/�)〉 = 1 − 〈p2〉(L/�)2

2!
+

〈p4〉(L/�)4

4!
− . . . ,

but each term in this series is independent of α, so the sum should be independent of α. Try to
explain this contradiction before reading on!
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To prove that Eq. (5.7) holds for any function f(x) with a Fourier transform f̃(p), we write

f(x) = (2π�)−1/2
∫
f̃(p)eipx/�dp ;

then

eipL/�f(x) = eipL/�(2π�)−1/2
∫
f̃(p)eipx/�dp

= (2π�)−1/2
∫
f̃(p)eip(x+L)/�dp

= f(x+ L) .

Note that p is an operator only outside the integral. On the other hand, if we expand

eipL/�f(x) =
∞∑
n=0

(ipL/�)n

n!
f(x)

=
∞∑
n=0

Ln

n!
dn

dxn
f(x) , (5.8)

we get a series which sums to f(x + L) if and only if f(x) is analytic, i.e. if the second
line in Eq. (5.8) is the Taylor series expansion of f(x + L). Equation (5.8) holds only for
analytic functions, but Eq. (5.7) holds for all functions having a Fourier transform. Not all
quantum wave functions are analytic, but all quantum wave functions have a Fourier transform
(momentum representation).

The operator eipL/� reveals the relative phase α, a nonlocal aspect of Ψα, because it
translates the wave function. By contrast, operators of the form xjpk reveal nothing about
α until the wave packets overlap and interfere. We see now that the usual statement of the
uncertainty principle, ∆x∆p ≥ �/2 with (∆x)2 = 〈x2〉 − 〈x〉2 and (∆p)2 = 〈p2〉 − 〈p〉2,
could tell us nothing about interference, because 〈x〉, 〈p〉, ∆x and ∆p are all independent of the
relative phase. The fact that 〈cos(pL/�)〉 and other observables do depend on the relative phase
suggests that we can find uncertainty relations that apply directly to quantum interference. To
find them, we start by asking what information eipL/� contains. If we replace p by p− nh/L
in eipL/�, the operator remains invariant, since ein2π = 1. So eipL/� does not depend on all of
p; it depends only on pmod nh/L. We call this quantity the modular momentum and denote it
pmod. Thus pmod is defined relative to L and takes values in the interval [0, h/L). If we know
something about pmod, then some of these values are more probable than others; if we know
nothing about pmod, then all the values are equally probable and the expectation value

〈eipmodL/�〉 = 〈eipL/�〉 = 0

vanishes because the values of pmodL/� are distributed with equal probability in the interval
[0, 2π). The converse is not true; for example, 〈eipL/�〉 vanishes if pmod = 0 and pmod = h/2L
both have probability 1/2. But if 〈einpL/�〉 vanishes for every positive integer n, then all the
values of pmod are equally probable.2 We state this result as the complete uncertainty principle:

2We can think of pmodL/� as an angle, since it takes values in the interval [0, 2π). Then 〈einpL/�〉 is the n-th
Fourier component of the distribution of this angle. If 〈eipL/�〉 vanishes for all positive n, then it vanishes for all
negative n (since the distribution is real) and the distribution is flat.
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pmod is completely uncertain if and only if 〈einpL/�〉 vanishes for every positive integer n.
Note that 〈einpL/�〉 vanishes in any state Ψ(x) confined to an interval of length L, for then
Ψ(x) and einpL/�Ψ(x) have no common support.

This result directly explains the connection between uncertainty and the breakdown of
interference. Let ψ1 and ψ2 represent wave packets emerging from two slits separated by a
distance L, with relative phase α. In the state Ψα the expectation value of eipL/� does not
vanish; in either of the states ψ1 or ψ2 it does. Thus what is lost when we detect though which
slit a particle passes (and reduce the state Ψα to eitherψ1 orψ2) is all knowledge of the modular
momentum pmod.

5.4 The xmod, pmod Representation

Having defined pmod, we may look for an analogous quantity for x. For a grating of slits
spaced a distance L apart, the modular momentum of an electron is pmod = p mod h/L
because the electron and grating can exchange transverse momentum only in multiples of h/L.
The electron passes this grating via the slits, but we do not know which slit. What we know is
the electron’s transverse position moduloL. So we define the modular position to be xmod = x
mod L. We have the identity

ei2πxmod/L = ei2πx/L

analogous to the identity eipmodL/� = eipL/�. We could, of course, define xmod = x mod
L′ for arbitrary L′, but L′ = L fits the physical conditions. The fact that pmod and xmod
are mutually defined makes them satisfy a particularly simple commutation relation. We can
calculate the commutator of eipmodL/� and ei2πxmod/L

′
for arbitrary L′ by applying Eq. (5.7).

We have

eipL/�ei2πx/L
′
f(x) = ei2π(x+L)/L′

f(x+ L) = ei2πx/L
′+i2πL/L′

eipL/�f(x) ,

for any function f(x) with a Fourier transform; therefore pmod and xmod commute,
[
eipmodL/�, ei2πxmod/L

′]
= 0 , (5.9)

if and only if L/L′ is an integer [2]. In general, two operators f(x) and g(p) commute only
if both are periodic and the product of their periods is a multiple of h. Figure 5.6 shows that
xmod is periodic in x with period L and pmod is periodic in p with period h/L; the product of
the periods is h. Unlike x and p, xmod and pmod commute.

Since xmod and pmod commute, no uncertainty principle keeps us from measuring them at
the same time. We can represent our knowledge of x and p by dividing phase space into cells of
area h as in Fig. 5.7. Figure 5.7 shows the case of xmod = L/4 and pmod = h/2L. They could
represent, for example, the modular position and momentum (along the x-axis) of the electrons
in the paradox of Sect. 5.1 (with solenoids shifting the phase by eΦB/�c = π). The electrons
must pass through the slits in the grating; we only know each electron’s transverse position
modulo L, since we do not know through which slit it passed. The lattice of solenoids shifts
the angles, and thus the transverse momenta, of the diffracted electrons; we only know their
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Figure 5.6: (a) Graph of xmod as a function of x. (b) Graph
of pmod as a function of p.
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p Figure 5.7: Phase-space representation of the
state in whichxmod = L/4 and pmod = h/2L.

transverse momenta modulo h/L, since we do not know through which angle each electron
diffracts.

The fact that xmod and pmod commute has great significance. Quantum mechanics limits
our knowledge in a way that classical physics does not, but not in the way we might expect.
If f(x) represents our knowledge of a particle’s position x and g(p) our knowledge of its
momentum p, they are compatible only if [f(x), g(p)] = 0. Since x and p do not commute, we
might conclude that knowing a particle’s position is incompatible with knowing whether, say,
its momentum is conserved. However, xmod and pmod provide a representation in which we
can have exact information about both position and momentum. This representation is unique
and exists for any conjugate pair of physical variables, including energy and time, allowing
partial but exact information about both variables.

The paradox in Sect. 5.1 arises from the fact that the interaction among the electrons, the
grating and the solenoids conserves momentum, and momentum is an unbounded quantity.
Exchanges of momentum between the electrons and the solenoids, no matter how small, must
eventually amount to a measurable effect. But now that we have defined modular momentum,
we see that the interaction between the electrons and the solenoids separately conserves pmod.
If the sum of the momenta pe of the electrons, pgr of the grating and psol of the lattice of
solenoids is conserved, we have

cos([pe + pgr + psol]L/�) = constant . (5.10)
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Since pgr changes in multiples of h/L, the modular momentum of the grating does not change.
Equation (5.10) then defines a relation between the modular momenta of the electrons and
solenoids.3 The electrons and solenoids exchange modular momentum via nonlocal phases;
but from the theorem of Sect. 5.2 we infer that the expectation values 〈p2

e〉 and 〈p2
sol〉 do

not depend on nonlocal phases. Hence the changes in momentum do not accumulate to a
measurable effect. The changes in the modular momentum of the solenoids are like a random
walk on a circle.

After defining xmod and pmod we define also Nx and Np according to

x = NxL+ xmod , p = Np(h/L) + pmod .

Applying Eq. (5.9), we obtain the relations
[
ei2πxmod/L, Np

]
= −ei2πxmod/L ,

[
eipmodL/�, Nx

]
= eipmodL/� , (5.11)

which recall the relation
[
Lz, e

iφ
]

= �eiφ; that is, xmod and pmod are analogous to angles. In
the same way that Lz , φ form a conjugate pair, so do �Nx and (L/�)pmod, and also �Np and
(2π/L)xmod; their uncertainties are related approximately by

∆Nx∆pmod ≥ h/L , ∆Np∆xmod ≥ L . (5.12)

The usual uncertainty principle states that if we try to localize a particle in phase space, the
best we can do is localize it in a cell of area h. As Eq. (5.12) and Fig. 5.7 show, if we don’t ask
in which cell it is, we can know exactly where it is in a cell. When do we need xmod and pmod?
The observables x and p and their uncertainty relation are adequate for analyzing a single wave
packet. For a single wave packet we knowNx andNp very well, so xmod and pmod are almost
completely unknown. But to analyze interference and other phenomena involving more than
one wave packet, we need modular variables.

Note the contrast between Eq. (5.9) and its classical counterpart, the Poisson bracket. If
we require the Poisson bracket of two functions f(x) and g(p) to vanish, we have

0 = {f(x), g(p)} =
df

dx

dg

dp
. (5.13)

Equation (5.13) implies that either f(x) or g(p) is a constant, so the only solutions are trivial.
So what happens to xmod and pmod in the classical limit? Taking � → 0 we find that xmod and
pmod cannot both have any definite value; thus nonlocal interference effects must disappear in
the classical limit.

5.5 Intimations of Nonlocality

In the Schrödinger formulation of quantum mechanics, the unitary operator U(t)

U(t) = e−iHt/� (5.14)

3The graph of cos(peL/�) versus cos(psolL/�) is an ellipse; see Prob. 5.10.
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evolves a state |Ψ〉 forward in time:

|Ψ(t)〉 = U(t)|Ψ(0)〉 . (5.15)

Schrödinger’s equation is the time derivative of Eq. (5.15). For simplicity, we have takenH to
be time independent in Eq. (5.14). In the Schrödinger formalism any operator Ωs, includingH ,
is unchanging unless it depends explicitly on time. In the Heisenberg formalism, by contrast,
states are unchanging and the operator Ωh corresponding to Ωs evolves in time according to

Ωh(t) = U−1(t)ΩsU(t) . (5.16)

Thus expectation values and eigenvalues come out the same in the two formulations. The time
derivative of Eq. (5.16) gives us the equation of motion for Ωh:

dΩh
dt

=
i

�
[H,Ωh] + U−1(t)

∂Ωs
∂t

U(t) . (5.17)

Consider the Heisenberg equation of motion for the operator eipL/� when the Hamiltonian
is H = p2/2m+ V (x). Equation (5.17) yields

d

dt
eipL/� =

i

�
[V (x) − V (x+ L)]eipL/� , (5.18)

since eipL/� generates displacements. This difference equation involves the potential evaluated
at x and at x + L. How does it compare with the classical equation of motion? The limit of
eipL/� as � → 0 does not exist if L is constant; so let us rewrite eipL/� as ei2πp/p0 with
p0 = h/L, and keep p0 constant. Then bothL and � go to 0 in the classical limit. The classical
equation of motion for ei2πp/p0 is

d

dt
ei2πp/p0 =

{
ei2πp/p0 , H

}
= −i2π

p0

dV

dx
ei2πp/p0 , (5.19)

and contains a derivative rather than a difference. Still, the two equations of motion are
consistent: [V (x) − V (x + L)]/� in Eq. (5.18) equals (2π/p0L)[V (x) − V (x+ L)] and
approaches −(2π/p0)dV/dx as L → 0.

Yet there is a fundamental difference between the classical and quantum equations of
motion. The classical equation of motion, Eq. (5.19), is local; ei2πp/p0 changes only if dV/dx
is nonzero, i.e. if a force acts directly at x. The quantum equation of motion, Eq. (5.18),
is nonlocal: ei2πp/p0 can change even if dV/dx is zero at the particle’s position, but V (x +
L) − V (x) = 0. Figure 5.8 shows a wave packet in a staircase potential V (x) = V0Nx. The
wave packet, on the step in the interval (L, 2L), is nonzero only where V (x) is constant and
there is no force. We don’t expect the momentum of the particle to change. But the modular
momentum does change: V (x + L) − V (x) = V0 for all x, and so the modular momentum
behaves as pmod(t) = [pmod(0) − V0t/�] mod h/L, whatever the particle’s state.

Because it obeys a nonlocal equation of motion, modular momentum is the key to describing
interference in Heisenberg’s formulation. Let’s analyze, first of all, the interaction of an electron
and a grating. The electron passes the grating, so we have precise information about xmod (in
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x

V(x)

0 L 2L 3L
0

V0

2V0

(x) Figure 5.8: A staircase potential V (x) = V0Nx and
a wave packet with support only in the interval L <
x < 2L.

the transverse direction); xmod and pmod commute, so we have precise information about pmod.
But xmod and Np do not commute (see Eqs. (5.11–12)) so we have no information about Np.
The interaction of the electron with the grating conserves pmod (see Prob. 5.5) so these facts
determine the interference pattern completely: pmod fixes the position of the fringes relative
to the grating; Np is completely uncertain and therefore the fringes are equally dense. Now
consider the effect of a lattice of solenoids. The solenoids affect the modular momentum in the
same way as the stair potential V (x) of Fig. 5.8. The nonlocal interaction of the electrons with
the solenoids changes pmod of the diffracting electrons; hence the diffraction pattern shifts.

Thus we have a new description of interference. Instead of a quantum wave that passes
through all the slits of a grating, we have a quantum particle that obeys a nonlocal equation
of motion. This equation of motion is exact if the grating is infinite and the incoming beam
is an eigenstate of momentum. And even if V (x + L) − V (x) depends on x, e.g. for the
case of only two slits, the expectation value of eip0L/� obeys a nonlocal equation of motion.
Modular variables provide intuition for the behavior of quantum particles, and they lead us to
ask new questions. Here is one: Consider a particle approaching a screen with a single open
slit. As it reaches the slit, we open a second slit. By opening the second slit, we change the
particle’s modular momentum. Don’t we act at a distance by changing the particle’s modular
momentum? The answer is that if we can be sure that the particle passes through the first
slit, then its initial modular momentum is completely uncertain and there is no way to detect
action at a distance. This is one example of the remarkable way in which quantum mechanics
reconciles causality and nonlocality. We will see others.

Problems

5.1 Compute the uncertainty ∆p = (〈p2〉 − 〈p〉2)1/2 for the state

Ψα(x, 0) = [ψ(x) + eiαψ(x+ L)]/
√

2 ,

where ψ is normalized and vanishes outside an interval of length 2a < L, and show that
∆p for Ψα(x, 0) and for ψ is the same.

5.2 Show that if V (x+ L) = V (x) for all x, then the Fourier transform∫∞
−∞ ei(kx−k′

x)xV (x)dx vanishes unless �(kx − k′
x) = nh/L.
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5.3 Let ∆x be strictly less than L, i.e. for some x0 let

x0 − L/2 ≤ x ≤ x0 + L/2 .

Show that ∆p ≥ h/L by showing that p mod h/L is completely uncertain.

∗5.4 For a particle of charge e and mass m, we define a modular velocity component vmod
along the direction of L implicitly as

mvmod = (p − eA/c) · L
L

mod h/L ,

where L = |L|. Modular velocity is gauge invariant, while modular momentum is not.
(a) Prove the operator equality

ei(p−eA/c)·L/� = eie[Λ(x)−Λ(x+L)]/�ceip·L/� ,

where A = ∇Λ. (Hint: prove first that U†f(p ·L)U = f(U†[p ·L]U) for any analytic
function f(p · L) and any unitary operator U .)
(b) Show that there is a gauge in which the Hamiltonian in Sect. 5.1, for electrons
interacting with both the grating and the lattice of solenoids, is periodic in xwith period
L.

5.5 Prove that the electrons and grating in Sect. 5.1 can exchange transverse momentum
only in multiples of h/L, i.e. that the interaction between the electrons and the grating
conserves transverse modular momentum. (See also Prob. 5.4(b).)

5.6 Consider a wave function Ψ(x) defined as follows: for nL ≤ x < (n + 1)L, Ψ(x) =
einαψ0(x− nL), where ψ0(x) is a function defined on the interval 0 ≤ x < L. Show
that p mod h/L = �α/L for this wave function.

∗5.7 Prove that the integral in Eq. (5.6) is independent of α for all times t, assuming that the
Hamiltonian of the wave functions is H = p2/2m+mω2x2/2.

∗5.8 Show that two functions f(x) and g(p) can commute only if both are periodic and the
product of their periods is a multiple of h.

5.9 Given [Lz, eiφ] = �eiφ, if we define modular angular momentumLmod = Lz mod 10�,
what is φmod such that [Lmod, φmod] = 0?

5.10 (a) Define χe = cos(peL/�) and χsol = cos(psolL/�). Show that points (χe, χsol)
obeying cos([pe + psol]L/�) = k (where k is a constant) form an ellipse with major
and minor axes

√
1 ± k along the lines χe = ±χsol. (See also Fig. 6.7.)

(b) Let χe and χsol obey cos([pe + psol + c]L/�) = k (where c is a constant). Show
that cos([pe + psol]L/�) = k′ and compute k′.

∗5.11 Find a complete set of simultaneous eigenfunctions of xmod and pmod.
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∗5.12 Derive the commutation relation for Nx and Np, defined in Sect. 5.4:

[Nx, Np] = − i

2π
+
i�

L

∑
m

δ

(
p− mh

L

)
+
iL

2π

∑
m

δ(x− Lm) ,

where the sums run over all integers m.

∗5.13 In an experiment to test the Aharonov–Bohm effect, a particle moves in the xy-plane
in a superposition of two nonoverlapping wave packets Ψ− and Ψ+ that pass on either
side of a thin solenoid located at (0, 0). The solenoid is perpendicular to the xy-axis and
contains magnetic flux Φ. On the y-axis there is a screen, and Ψ− and Ψ+ pass through
holes located at (0,−L/2) and (0, L/2), respectively. Show that the distribution of the
velocity component vy changes discontinuously [3] as the wave packets cross the y-axis.
(a) First calculate the change in 〈eimvyL/�〉 with the gauge choice Ax = −Φδ(x)Θ(y),
Ay = 0, where Θ(y) is the Heaviside function Θ(y) = 1/2+y/2|y| and dΘ/dy = δ(y).
(b) Now repeat the calculation with the gauge choice Ax = −yΦ/2π(x2 + y2), Ay =
xΦ/2π(x2 + y2). (See also Prob. 5.4.)
(c) According to Sects. 4.4 and 5.2, the effect of the flux appears only when the two
wave packets recombine; according to (a) and (b), however, the flux affects a measurable
observable (modular velocity) in the instant that the line between the wave packets
crosses the solenoid. Resolve this paradox!
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6 Nonlocality and Causality

Newton suspected the apparent nonlocality of gravity. “That gravity should be innate, inherent
and essential to matter so that one body may act upon another at a distance through a vacuum
without the mediation of anything else, by and through which their action or force may be
conveyed from one to another, is to me so great an absurdity that I believe no man who has in
philosophical matters any competent faculty of thinking can ever fall into it” [1]. More than
two centuries years later, Einstein confirmed Newton’s suspicions: gravitational interactions
are local. Einstein’s theory of gravity is free of the “absurdity” of action at a distance.

But quantum mechanics is nonlocal, in at least two ways. There are nonlocal quantum
correlations. And there are nonlocal quantum equations of motion: modular momentum,
for example, obeys a nonlocal equation of motion. (See Sects. 3.4 and 5.5.) Still, nonlocal
quantum correlations do not manifest action at a distance; they manifest “passion at a distance”
(in Shimony’s apt phrase [2]): there is no cause and no effect in quantum correlations. (See
Prob. 3.11.) What about nonlocal equations of motion? Quantum equations of motion may
be nonlocal, but quantum uncertainty hides action at a distance. In the example of Sect. 5.5,
a particle is about to pass through a screen with a single slit. By opening a second slit some
distance away, we change how the modular momentum of the particle evolves. Now modular
momentum is an observable; we measure it to observe quantum interference. But in this
example, the initial modular momentum of the particle is completely uncertain, so we never
see action at a distance. Quantum nonlocality has a logic of its own. Modular variables expose
this logic, leading us into paradox but not into contradiction.

6.1 Causality and a Piston

Figure 6.1 shows a long cylinder with a particle in it. The cylinder has a seal at one end, and
a piston, initially at rest, at the other end. There is no friction between the piston and the
cylinder, but the piston is much heavier than the particle and hardly moves if the particle hits
it. Attached to the outer end of the piston is a box with two open sides. Suppose that a little
ball strikes the box on the piston while the particle inside the cylinder is as far as possible (a
distance L) from the piston. The ball bounces through the box on the piston in two completely
elastic collisions that move the piston inward a distance |δL|. (See Fig. 6.2.) Does the particle
in the cylinder affect the trajectory of the ball?

Let us first answer this question within classical mechanics. The ball bounces once off the
piston, and the piston moves inward. If the ball bounces off the piston a second time before
the particle reaches the piston, it regains all its energy and momentum and leaves the piston
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L

Figure 6.1: A particle in a cylinder with a movable
piston.

L
L

Figure 6.2: A ball bounces off the piston in two elastic
collisions, moving the piston inwards a distance δL.

at rest. But if the particle reaches the piston between the two bounces, it carries energy and
momentum away from the piston; and when the ball bounces off the piston a second time, it
does not regain all the energy and momentum it lost to the piston, and leaves with reduced
energy and momentum.

Do we get the same answer in quantum mechanics? Let us take a close look. Again we
compare time scales. Suppose the particle is fast and bounces from one end of the cylinder to
the other many times between the two collisions of the ball. Its energy increases between the
collisions.1 This increase in energy must come out of the energy of the ball, so the ball loses
energy to the piston. But what if the particle is too slow to reach the piston before the second
collision? We may assume that the energy of the ball does not change.

Yet the following argument [3] shows that our assumption is incorrect. Let us prepare the
particle in an initial state |ψ(0)〉, at time t = 0; the initial state is a wave packet with very large
uncertainty ∆x in position and very small uncertainty ∆p in momentum. Suppose ∆x is very
large compared with |δL| (but small compared with L) and |ψ(0)〉 is localized near the sealed
end of the cylinder, as far as possible from the piston. In the absence of the ball, the particle
traverses the cylinder back and forth in a time T = 2L/|〈v〉| where 〈v〉 is the expectation value
of the velocity of the particle. In time T , the wave packet returns to its initial position and
momentum, keeping its shape. (See Prob. 6.1.) It spreads out, as Eq. (5.4) shows, but spreads
out very little if v is large. We can neglect the spreading if

(
∆p
p

)2

�
(

∆x
2L

)2

. (6.1)

(See Prob. 6.2.)
Now consider the following matrix element,

〈ψ(0)|e−iHT/�|ψ(0)〉 , (6.2)

1The increase in energy follows from the quantum adiabatic theorem. (See Chap. 12.) The particle is in a
superposition of states |n〉 with energiesEn = n2π2

�
2/2mL2, wherem is the mass of the particle. AsL decreases,

the energies En increase. If the decrease in L is adiabatic, the coefficients of the states |n〉 remain the same. Hence
the expectation value of the energy increases.
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with H the Hamiltonian of the particle. On the one hand, Eq. (6.2) is the expectation value of
e−iHT/� at time t = 0. (Although e−iHT/� is not an observable, its real and imaginary parts
are observables.) On the other hand, Eq. (6.2) contains the state of the particle at time t = T ,

|ψ(T )〉 = e−iHT/�|ψ(0)〉 ,
so here the present (t = 0) contains the future (t = T ).

Let us evaluate Eq. (6.2) in two cases. In the first case, the ball does not strike the piston
any time before t = T . In the approximation that the wave packet does not spread, we can
immediately compute Eq. (6.2): e−iHT/� evolves the state |ψ(0)〉 forward a time T , and |ψ(0)〉
and |ψ(T )〉 are the same up to an overall phase. By adjusting L, we can set this phase to 1.
(See Prob. 6.3.) Thus

|ψ(T )〉 = |ψ(0)〉 (6.3)

and the expectation value is 1. In the second case, the ball strikes the piston at time t = 0,
moving it inwards, and again at some time t � T/2. These two bounces hardly affect |ψ(0)〉,
which vanishes at the piston. However, they change the potential term in the Hamiltonian
H . The operator e−iHT/� still evolves the state |ψ(0)〉 forward a time T , but now |ψ(T )〉
is displaced a distance 2|δL| from |ψ(0)〉, because the cylinder has become shorter inside.
We can express this displacement as the action of the translation operator ei2p|δL|/�; then we
obtain, instead of Eq. (6.3),

|ψ(T )〉 = ei2p|δL|/�|ψ(0)〉 .
For ∆x � |δL| the overlap |〈ψ(T )|ψ(0)〉| remains close to 1; but the phase of |ψ(T )〉 has
changed. The change in phase is approximately ei2〈p〉|δL|/�, where 〈p〉 is the expectation value
〈ψ(0)|p|ψ(0)〉. (See Prob. 6.4.) So the ball changes the expectation value of e−iHT/� already
at time t = 0. From the change in this expectation value we infer a small change in the energy
of the particle, of roughly −2〈p〉|δL|/T . It does not matter that we did not compute the change
exactly. What matters is that the ball has changed the energy of the particle in the cylinder,
even while the particle is far from the piston. By conservation of energy, the energy of the ball
has changed, too. Thus a change in the energy of the ball immediately shows that there is a
particle in the cylinder, even if the particle is nowhere near the piston!

Now that is action at a distance. Suppose that Alice stands at the sealed end of the cylinder
and Bob stands near the piston. They agree that, at time t = 0, Alice may or may not insert a
particle into the cylinder, in the state |ψ(0)〉. Then Alice sends one bit of information to Bob.
By inserting a particle into the cylinder, Alice says Yes to Bob; by leaving the cylinder empty,
she says No. Bob measures the energy of the ball just before and just after its two collisions
with the piston. A change in the energy means Yes; no change means No. But since the time
between the collisions is less than T/2, Alice’s message reaches Bob before the particle does!

6.2 Quantum Effects Without Classical Analogues

This section presents three quantum effects without classical analogues. Each is likely to
surprise us. We see that quantum mechanics implies the effect, and we try to understand the
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effect intuitively; yet each new effect surprises us anew. Indeed, we have not understood; once
we really understand the effects, we see that they are almost the same.

The first effect concerns a particle in a sealed cylinder with a piston (again). Initially, the
inner length of the cylinder is L and the particle is in an eigenstate of energy with wavelength
λ = 2L/N , with N large. If we suddenly pull the piston out a distance δL, the wave function
of the particle has no time to adjust. What happens to the kinetic energy E of the particle?
Specifically, what happens if δL = λ/2, and what happens if δL is slightly less than λ/2?

If δL = λ/2, the energy is overwhelmingly likely to remain the same. The energy depends
on the wavelength, and the wavelength will most likely remain the same – the eigenstate of the
new Hamiltonian will resemble the initial eigenstate, but with one additional node. The inner
product between these states is L1/2(L + λ/2)−1/2, so the probability that the energy stays
the same is

L

L+ λ/2
=

N

N + 1
,

which is nearly 1. Now suppose δL = (λ/2)(1−ε), where ε is small and positive. Once again,
the most probable new eigenstate is the one with just one more node; however, the wavelength
λ′ in the new eigenstate is slightly shorter than λ. Since

(N + 1)(λ′/2) = N(λ/2) + (λ/2)(1 − ε) ,

we have

λ′ = λ

(
1 − ε

N + 1

)
.

The kinetic energy E′ of the new eigenstate is therefore

E′ ≈ E +
π2

�
2εN

mL2 ,

and the energy of the particle in the cylinder has increased! There are other final states with
kinetic energy less than E; indeed, the expectation value of the energy does not change if we
suddenly pull out the piston. But the probability that the particle has final energy E′ > E is
substantial. (See Prob. 6.6.) This effect has no classical analogue; classically, the energy of
the particle can only decrease if we pull out the piston. (Since E′ − E is proportional to �

2,
the increase in energy vanishes in the classical limit.)

The second effect involves noninteracting one-dimensional particles in a momentum eigen-
state. The particles are free except for a very brief time T when they are subject to the potential
V (x) shown in Fig. 6.3. The corresponding force field is periodic in the position x: it equals
a constant F for nL ≤ x ≤ nL + a, with n any integer, and vanishes elsewhere. According
to classical mechanics, the force affects only the fraction a/L of particles that happen to be in
the regions where it is nonzero; each of these particles gets an impulse FT in the direction of
increasing x. If a/L is small and there are not many particles, the force may not affect any of
them.
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Figure 6.3: The potential V (x) corresponds
to a force periodic in space.

According to quantum mechanics, something quite different happens. Let us compute the
effect of the potential on an initial state Ψin(x) of zero momentum, Ψin(x) = 1/

√
2π. The

final state Ψfin(x) after a time T is

Ψfin(x) = e−iHT/�Ψin(x) ,

where H is the sum of the kinetic term p2/2m and the potential term V (x). These terms do
not commute. However, if we fix the product α = aFT and take the limit T → 0, we can
neglect the kinetic term. (See Prob. 6.8.) The final state Ψfin(x) is

Ψfin(x) = e−iV (x)T/�Ψin(x) =
1√
2π
e−iV (x)T/� ,

where V (x)T does not depend on T sinceα = aFT does not. To see what Ψfin(x) represents,
we compute its Fourier transform Ψ̃fin(p). For simplicity, we takea/L to be small and compute
the Fourier transform in the limit a/L → 0. (See also Prob. 6.9.) We obtain

Ψ̃fin(p) =
1√
2π

∫ ∞

−∞
dx e−ipx/�Ψfin(x)

=
�

2πip

[
e−ipL/� − 1

] ∞∑
n=−∞

ein(α−pL)/� . (6.4)

We apply the following identity:

1
2π

∞∑
n=−∞

einz =
∞∑

n=−∞
δ(z − 2πn) . (6.5)

(The proof of this identity is Prob. 6.10(a).) Thus

Ψ̃fin(p) =
�

ip

[
1 − e−ipL/�

] ∞∑
n=−∞

δ(pL/� − α/� − 2πn) . (6.6)

For α = 0, Ψ̃fin(p) reduces to δ(p/�), the initial state. But for α nonzero, there is a shift
in the momentum. The possible values of p are p = α/L − nh/L, where n is any integer.
These values are not equally probable. The probability of p in the final state is proportional to
sin2(pL/2�)/p2. Now let us take α = (2π−ε)�, where ε is small and positive. Fig. 6.4 shows
the probability distribution for p in the final state. The most likely value of p is p = −ε�/L.
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Figure 6.4: The relative probability of allowed
values of p in the final state of Eq. (6.6).

Thus, a force to the right at points x = nL most likely moves quantum particles to the left!
This is a purely quantum effect, vanishing in the limit � → 0.

The third effect involves a spin-1/2 particle of magnetic moment µ in a magnetic field. The
Hamiltonian for the particle is

H =
µ�

2
[σzBz + σzB

′
z(t) + σxBx(t)] ,

whereBz (pointing in the z-direction) is constant whileB′
z(t) (also pointing in the z-direction)

and Bx(t) (pointing in the x-direction) are periodic in time. If B′
z(t) and Bx(t) are zero, the

particle simply precesses in the constant magnetic field with angular frequency ω = µBz , and
Sz = �σz/2 is a constant of the motion. Suppose B′

z(t) = 0 but Bx(t) pulses with period T .
(See Fig. 6.5(a).) Will the spin flip? It will flip if T is any multiple of the precession time. The
particle makes a full precession in a time 2π/ω = 2π/µBz . If T is a multiple of this time, i.e.
if

T = 2nπ/µBz (6.7)

for integer n, then the effect of Bx(t) is cumulative and the spin flips. Otherwise, the effect
of Bx(t) averages to zero. Suppose that both B′

z(t) and Bx(t) pulse with period T , but never
at the same time, as in Fig. 6.5(b). Even if T does not satisfy Eq. (6.7), we can still flip the
spin by choosingB′

z(t) appropriately. This effect has a simple classical explanation. The field
B′
z(t) adjusts the particle’s precession so that the particle makes one or more full precessions
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Figure 6.5: (a) Bx(t) as a function of time, with B′
z(t) = 0. (b) Bx(t) and B′

z(t) as functions of time.

between everyBx(t) pulse, even if T does not satisfy Eq. (6.7); then the effect ofBx(t) is still
cumulative. The same explanation applies to the quantum particle. So where is the quantum
effect without a classical analogue?

The answer is that the effect has a classical analogue if we look at precession, but not
if we look at energy. The change of energy in a flip between | ↑〉 and | ↓〉 (eigenstates of
σz) is ±µ�Bz . What accounts for this energy change? The B′

z(t) field briefly changes the
particle’s energy, but the change averages to zero. The proof is that [σzBz+σxBx(t), σzB′

z(t)]
vanishes (since Bx(t)B′

z(t) vanishes) so the average values of σzBz + σxBx(t) and σzB′
z(t)

are constant in time. Thus, the particle can exchange energy only with the Bx(t) field.
But if B′

z(t) vanishes, the particle and the Bx(t) field (i.e. the terms µ�σzBz/2 and
µ�σxBx(t)/2 in H) can exchange energy only in multiples of h/T . This fact follows from a
perturbative calculation. Suppose we subject the particle to a perturbation g0V sinωt lasting
a time T/g0, where g0 is a constant, the operator V is time independent, and ω ≈ µBz . The
probability of a spin flip is approximately

∣∣∣∣〈↑ |V | ↓〉g0 sin(µBzT/g0 − ωT/g0)
�(µBz − ω)

∣∣∣∣
2

. (6.8)

(See Prob. 6.11.) Now we consider the limit g0 → 0; we find that the spin flips only if
µBz = ω. The limit g0 → 0 is pertinent because the perturbation can be arbitrarily long
and weak; as long as Bx(t) has a cumulative effect on the spin, the spin will eventually flip.
The Fourier components of Bx(t) have angular frequencies that are multiples of 2π/T , so by
applying Eq. (6.8) (or Eq. (2.3)) we find that Bx(t) supplies energy in quanta hν = h/T , i.e.
the spin flips only if µ�Bz = nh/T . So we are back to Eq. (6.7).

To summarize:
i) If theB′

z(t) field is zero, the particle and theBx(t) field exchange energy only in quanta
h/T . The spin does not flip unless the spin energy gap is a multiple of h/T .

ii) If the B′
z(t) field is nonzero, it exchanges no energy with the particle and the Bx(t)

field. But the spin flips even if the spin energy gap is not a multiple of h/T .
Apparently, the B′

z(t) field modifies the exchange of energy between the particle and the
Bx(t) field, while making no net contribution to their energy! This effect is nonlocal in time
since B′

z(t) vanishes whenever the particle and the Bx(t) field interact.
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6.3 Modular Energy

The last two sections describe quantum effects without classical analogues. The Aharonov–
Bohm effect (Sect. 4.4) is another such effect. What do all these effects have in common? They
are all nonlocal. Even the first effect in Sect. 6.2 (where pulling back a piston in a cylinder
increases the energy of a particle inside) is nonlocal in that local interactions (collisions between
the particle and the pulled piston) can only decrease the energy of the particle. What else do
the effects have in common?

Let’s return to the Aharonov–Bohm effect and consider an electron in a long, narrow box.
Figure 6.6(a) shows the initial state of the electron. The wave function is symmetric around
the vertical axis in Fig. 6.6(a) and vanishes in a central region. A long, thin solenoid carrying
a flux hc/2e – half a flux quantum – crosses the box through the central region in a short
time T . It leaves the box before the electron wave function can spread to the central region,
hence the electron never touches the solenoid. However, the solenoid induces a relative phase
of −1 between the two halves of the wave function on either side of the central region. (The
Aharonov–Bohm phase depends only on the relative motion of the solenoid and the electron.)
Once the solenoid passes, the state of the electron is antisymmetric in the vertical axis of
Fig. 6.6(b). The symmetric and antisymmetric states have different energies. Thus the passage
of the solenoid has changed the distribution of energy of the electron. Yet the energy distribution
of the solenoid does not change, because the solenoid never encounters the electron.

We can analyze this nonlocal effect as follows. Let ρe and ρs denote the probability distri-
butions for the energies of the electron and the solenoid, respectively, and ρes the probability
distribution for their combined energy; ρes is a convolution of ρe and ρs:

ρes(E) =
∫
ρe(E − E′)ρs(E′)dE′ . (6.9)

If total energy is conserved, ρes(E) does not change with time. Also, ρs(E′) does not change.
But ρe(E−E′) changes. From Eq. (6.9) we do not see just how ρe(E−E′) can change while
ρes(E) and ρs(E′) do not, but from the Fourier transform of Eq. (6.9) we do. By definition,

(a)

x

(b)

x

fin(x)

in(x)

Figure 6.6: (a) Initial state of the electron in the box
of Sect. 6.3. (b) Final state of the electron after a
solenoid carrying half a flux quantum crosses the box
at x = 0.
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the Fourier transform of ρs(E) is

ρ̃s(t) = (2π)−1/2
∫
eiEt/�ρs(E)dE

= (2π)−1/2〈ψs|eiHst/�|ψs〉 , (6.10)

where ψs is the initial wave function of the solenoid and Hs is its Hamiltonian. The Fourier
transform of Eq. (6.9) is

ρ̃es(t) = ρ̃e(t)ρ̃s(t) .

Now ρe can change without ρs and ρes changing only if ρ̃e changes without ρ̃s and ρ̃es
changing. That is, ρ̃s(t) and ρ̃es(t) must vanish over some interval in t. The term 〈ψs|eiHst/�

in the second line of Eq. (6.10) represents the wave function of the solenoid after a time t. If
ρ̃s(t) = 0, then after a time t the solenoid has evolved to an orthogonal state. The solenoid
does indeed evolve to an orthogonal state: it crosses the box in a time T . Hence if t ≥ T , then
ρ̃s(t) vanishes.

We can interpret 〈ψs|eiHst/�|ψs〉 in Eq. (6.10) as the expectation value of eiHst/� =
ei(Hs)modt/�, where we define the modular energy (Hs)mod or (Es)mod of the solenoid to
be its energy modulo h/t, in analogy with the definitions of pmod and xmod (Sects. 5.3–4).
Equation (6.10) shows that the modular energy of the solenoid is completely uncertain if t ≥ T .
What does it mean for the modular energy to be completely uncertain? Suppose the modular
energy of the electron changes. Then so does the modular energy of the solenoid: the sum of
energiesEe+Es does not change, hence the modular energies of the solenoid and the electron
satisfy

cos(Ee + Es)t/� = constant . (6.11)

Equation (6.11) defines an ellipse. (See Fig. 6.7 and Prob. 5.10.) By measuring the modular
energy of the solenoid immediately before and after it crosses the box, we could determine
any change in the modular energy of the electron. But since the solenoid never encounters the
electron, any measurable change in (Es)mod would be action at a distance. Can we observe
action at a distance? We cannot, because the modular energy of the solenoid is completely
uncertain.

cos Eet/

cos Est/

Figure 6.7: Modular energies of an electron and a
solenoid according to Eq. (6.11). (See also Prob. 5.10.)
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Here is the logic of quantum nonlocality. The electron and the solenoid interact nonlocally,
exchanging modular energy. The nonlocal interaction is well defined only after the solenoid
crosses the box; but after the solenoid has crossed the box, its modular energy is completely
uncertain. Indeed Es mod h/T is completely uncertain at all times, since the solenoid moves
to an orthogonal state in a time T . Hence the nonlocal exchange of modular energy has no
observable effect on the solenoid.

Modular energy and momentum are the key to the effects in Sects. 6.1–2. In Sect. 6.1, the
presence of a particle in the cylinder shows up as a change in the energy of the ball. Specifically,
Eq. (6.2) implies that it is the modular energy – the energy modulo h/T – of the the ball that
changes, if and only if Alice puts a particle in the cylinder. Bob must measure the change in
the modular energy of the ball in order to detect the presence of the particle. He must measure
the modular energy of the ball before and after its two collisions with the piston, and he must
do so within a time less than T to demonstrate action at a distance. It follows that in a time
less than T the ball must have bounced twice and evolved to an orthogonal state, i.e. that

〈Ψ(0)|e−iHballT/�|Ψ(0)〉 = 0 ,

where |Ψ(0)〉 is the state of the ball at the first bounce andHball is the Hamiltonian of the ball.
Thus Eball mod h/T is completely uncertain2 and Bob cannot detect the particle that Alice
may or may not have put in the cylinder. Hence Alice cannot send a message to Bob by action
at a distance. In Sect. 6.2, the first effect involves an exchange of modular energy Emod ≈ E
mod �

2π2N/mL2; increases in energy are due to exchange of modular energy, while decreases
in energy are due to local interactions between the particle and the piston. In the second effect,
the unexpected motion of particles is due to exchanges of modular momentum, and in the third
effect the particle acquires modular energy from B′

z(t). (See Probs. 6.7 and 6.12.)

6.4 Reconciling the Irreconcilable

Quantum theory is implicitly nonlocal. Nonlocality is a wonder, but we may also wonder
why quantum nonlocality is implicit rather than explicit. Why do we have to work so hard to
demonstrate quantum nonlocality? Why isn’t quantum mechanics more nonlocal than it is? For
example, why can’t we exploit quantum nonlocality to send messages? Chapters 3–6 contain
many examples of quantum nonlocality. But in each example, we encounter a constraint. What
constraints does quantum nonlocality obey?

Let us try to guess a constraint: quantum nonlocality does not allow action at a distance.
Nonlocal correlations, we know, obey this constraint. (See Prob. 3.11). As for modular
variables, they behave nonlocally – by opening one slit, we change the modular momentum of
a particle passing through another slit – but in the example of Sect. 5.5, quantum uncertainty
prevents us from measuring the change, so we cannot exploit the change in modular momentum
to act at a distance. The examples of this chapter expose the same logic: quantum uncertainty
hides changes in modular variables that would otherwise manifest action at a distance. This
logic hints at a fundamental constraint.

2According to the complete uncertainty principle; see Sect. 5.3.
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Nevertheless, the constraint we guessed is not right. To see what is wrong, consider
the scalar Aharonov–Bohm effect. (See Sect. 4.4.) Electrons interfere along two paths on
either side of a capacitor. By charging the capacitor briefly as the electrons pass, we change
their interference pattern. We can interpret this effect as the local effect of a scalar potential
V (x, t). However, the potential V (x, t) is not measurable; we can only measure the gradient
of V (x, t) (which vanishes along the two paths). To make the correspondence between theory
and measurement as close as possible, we choose the interpretation of Sect. 4.5: the change in
the electrons’ interference pattern is a nonlocal effect of the electric field in the capacitor. This
nonlocal effect is action at a distance! The electric field, acting at a distance on the electrons,
yields a measurable effect (the change in the electrons’ interference pattern). So quantum
nonlocality does permit action at a distance.

There is a constraint similar to the one we guessed. It is called (relativistic) causality. The
principle of causality states that there is no way to send a message faster than light. We do
not expect nonrelativistic quantum mechanics to obey this principle, because in nonrelativistic
quantum mechanics there is no maximum speed. However, nonrelativistic quantum mechanics
obeys the principle of causality more than we might expect. Nonlocal quantum correlations
obey causality, because they are useless for sending messages. The Aharonov–Bohm effect,
too, obeys causality: even if an electric or magnetic field acts at a distance on electrons as they
pass, the only measurable effect – the change in the electrons’ interference pattern – lies within
the future light cone of the field. (See Prob. 6.14.) In each example we find that quantum
nonlocality obeys causality.

As Sect. 6.3 shows, the paradox of Sect. 6.1 respects causality because the modular energy
of the ball that moves the piston, Eball mod h/T , is completely uncertain. ButEball mod h/T
may not be completely uncertain, and then the paradox respects causality in a different way.
Let the ball move along its trajectory in a superposition of two identical wave packets, with
a time lag T between the wave packets. Then 〈Ψ(0)|e−iHballT/�|Ψ(0)〉 does not vanish and
Eball mod h/T is measurable. But then the uncertainty about when the ball struck the piston
is greater than T and the particle inside the cylinder could have reached the piston before the
ball.

It is remarkable that quantum theory reconciles nonlocality and causality. They seem
incompatible. Is quantum theory the only theory that reconciles causality and nonlocality? A
positive answer to this question would transform our understanding of quantum theory, for
then we could deduce quantum theory from causality and nonlocality. Quantum theory would
follow from two axioms:

i) All physical interactions respect causality.
ii) Some physical interactions are nonlocal.

Quantum theory would then be as logically simple as the special theory of relativity, which
follows from two axioms:

i′) The laws of physics are the same in all inertial reference frames.
ii′) The speed of light in vacuum is c.

Each of the axioms i′) and ii′) has a clear physical meaning. Axiom i′) states a fundamental
invariance; axiom ii′) defines a physical constant. These axioms are the starting point of the
special theory of relativity. If we chose another starting point, such as the dependence of
length and time on motion, the theory would look quite bizarre and meaningless. Why should
objects contract in the direction of their motion? Only after discovering the axioms i′) and ii′)
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would we understand the theory. Perhaps the problem of understanding quantum mechanics is
analogous. Quantum mechanics looks bizarre, because our axioms – statements about Hilbert
space and Hermitian operators – lack clear physical meaning. But axioms i) and ii) have clear
physical meaning.

Do axioms i) and ii) imply quantum theory? We return to this question in the last chapter
of the book. Here, we pose the question and suggest how quantum mechanics might plausibly
follow from these axioms. From i) and ii) we can deduce uncertainty: physical variables
that interact nonlocally cannot all have definite values at all times. Otherwise there would
be observable violations of causality. For example, any quantity that is exchanged nonlocally
must be unmeasurable. Causality requires modular momentum and modular energy to be
completely uncertain at times. Alice, by inserting a particle into the cylinder of Sect. 6.1,
changes the modular energy of the piston nonlocally – action at a distance. But the modular
energy of the piston is completely uncertain. We have action at a distance with no observable
results.

Yet action at a distance can have observable results. The “interaction-free” measurement of
Elitzur and Vaidman [4] is an example. To dramatize the interaction-free measurement, let us
imagine a “bomb” or “mine” so sensitive that any interaction makes it explode. Is there any way
we could detect such a bomb without exploding it? To detect a bomb in a region S, we build a
Mach-Zehnder interferometer with one of its arms crossing the region S. Figure 6.8(a) shows
the interferometer with no bomb in the region S. A half-silvered mirror splits the incident
photon beam into two equal parts. The parts recombine at another half-silvered mirror. By
adjusting the length of each arm (and taking into account the π/2 phase difference between
reflection and transmission), we can make the parts of the beam interfere constructively in one
direction and destructively in the other. Then all the photons leave the interferometer in the
same direction. If, however, a detector records which path the photon actually takes through
the interferometer, interference disappears (according to the complementarity principle) and
the photon may leave the interferometer in either direction. If there is a bomb in the region
S and it does not explode, it records the fact that the photon did not pass through S. The
photon went through the other arm of the interferometer. Then interference disappears and the
photon may come out either way. (See Fig. 6.8(b).) So if we see a single photon leave the
interferometer in the direction of destructive interference, we have detected the bomb without
exploding it.

(a) S (b) S

Figure 6.8: (a) Mach-Zehnder interferometer with one arm crossing a region S. (b) The interferometer
with a “bomb” in region S.
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This baffling quantum effect nicely illustrates how modular variables work. The two possi-
ble final states of the photon – the possible directions in which it may leave the interferometer
– correspond to different values of a modular variable. Which modular variable? Consider a
plane passing through the two half-silvered mirrors; let an operator P reflect the photon wave
function through this plane. (See Prob. 6.15.) The expectation value of P is cosα, where
α is the relative phase between the two parts of the photon wave function in the two arms of
the interferometer. The operator corresponding to α is a modular variable: it is nonlocal and
has the topology of an angle. The possible final states of the photon correspond to different
distributions of α. When both arms of the interferometer are clear, the value ofα is defined and
the photon leaves the interferometer in the direction of Fig. 6.8(a). When one arm is obstructed,
α is completely uncertain and the photon leaves the interferometer in either direction. The
“bomb” acts at a distance on the photon by changing the expectation value of P .

Problems

6.1 Show that a wave packet reflecting from an infinite potential barrier acquires a phase
factor -1 but keeps its shape.

6.2 Let Ψ(x, t) denote the gaussian wave packet of Eq. (5.4).
(a) Show that

∣∣∣∣
∫ ∞

−∞
dxΨ∗(x, t)Ψ(x− �kt/m, 0)

∣∣∣∣
2

=
(

1 +
�

2t2

4m2a4

)−1/2

.

(b) Derive Eq. (6.1) from the answer to Prob. 6.2(a).

6.3 In Eq. (6.2), |ψ(0)〉 is a superposition of eigenstates of H with eigenvalues En =
�

2n2π2/2mL2. Assume that in this superposition n ≈ N , i.e. (n − N)2/N � 1,
and let T = 2mL2/�πN . Compute 〈ψ(0)|e−iHT/�|ψ(0)〉 and show that it approaches
e−iNπ for large N .

6.4 Let ψg(x) denote the wave packet of Eq. (5.3) and evaluate
∫ ∞

−∞
dxψ∗

g(x)e
i2p|δL|/�ψg(x)

for |δL|/a � 1.

6.5 Consider a particle moving in a one-dimensional box of length L, in a wave packet with
expectation value 〈vx〉 for the velocity. At t = 0 we open a small hole at one end, and
the wave packet evolves into a train of little wave packets of diminishing size. Estimate
the particle’s modular energy.

6.6 (a) For the first effect in Sect. 6.2, let the initial energy E of the particle in the cylinder
be E = h2/2mλ2 and let the initial (inner) length of the cylinder be 4.5λ. Suppose
that the length increases suddenly to 4.9λ. Show that the sudden increase has an 80%
chance of increasing the energy by 4%.
(b) Show that the expectation value of the energy does not change.
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6.7 Compute the change in modular energy of the particle in the first effect of Sect. 6.2.

∗6.8 Let H be the Hamiltonian

H =
p2

2m
+ δ(t)V (x) ,

with δ(t) = 1/T for 0 ≤ t ≤ T and δ(t) = 0 otherwise. Assume that dV (x)/dx and
d2V (x)/dx2 are finite for all x. Show that

|ψ(t)〉 = e−iV (x)t/T�|ψ(0)〉
solves the Schrödinger equation i�∂|ψ(t)〉/∂t = H|ψ(t)〉 for 0 ≤ t ≤ T in the limit
T → 0. (We apply this result to the potential V (x) in Fig. 6.3 by smoothing V (x) at
the points . . . ,−L,−L+ a, 0, a, L, L+ a, . . . .)

∗6.9 Show that the expectation value of p in the state |Ψ̃fin〉, according to Eq. (6.6), is

〈Ψ̃fin|p|Ψ̃fin〉 =
�

L
sin(α/�) ,

which can be negative. But according to Ehrenfest’s theorem, it equals the product of
the time T and the expectation value of the force −dV/dx, which is positive! (See
Prob. 4.4.) Show that this contradiction is due to the unphysical limit a/L → 0 taken
in Eq. (6.4).

∗6.10 (a) Prove Eq. (6.5) by inserting the left-hand side into an integral, restricting the sum to
|n| ≤ M , performing the integral by contour integration, and taking the limit M → ∞.
(b) Show that for α = 0, Ψ̃fin(p) in Eq. (6.6) reduces to δ(p/�).

6.11 Let |E〉 and |E′〉 be nondegenerate eigenstates of a Hamiltonian H , with eigenvalues
E and E′, respectively. At time t = 0, the state of the system is |E〉. Consider a
perturbation H → H + g0V sinωt for 0 ≤ t ≤ τ , where g0 is a constant and V is time
independent. Solve the time-dependent Schrödinger equation to first order in g0. Show
that the probability for the system to be in the state |E′〉 at time t = τ is

g2
0 |〈E|V |E′〉|2

∣∣∣∣∣
ei(E

′−E)τ/�+iωτ − 1
E′ − E + �ω

− ei(E
′−E)τ/�−iωτ − 1
E′ − E − �ω

∣∣∣∣∣
2

to this order [5].

∗6.12 For the third effect in Sect. 6.2, define an appropriate modular energy and show that the
field B′

z(t) changes the modular energy of the spin-1/2 particle.

∗6.13 Consider a spin-1/2 particle restricted to the x-axis. It oscillates harmonically, with a
large amplitude A, keeping its shape. Initially, Sz = −�/2. A magnetic field B(t),
parallel to the z-axis, turns on briefly every time the particle reaches the point x = −A;
thus the energy of the particle changes by µ�B(t)/2 but no force acts upon it. In a
neighborhood of x = A, a passing pellet strikes the particle and flips its spin. Calculate
the change in modular energyEmod of the pellet. Show that the change inEmod, which
depends nonlocally on B(t), is consistent with nonrelativistic causality.
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6.14 The scalar Aharonov–Bohm effect involves a transient potential difference, hence a
transient electric field, between two interfering paths. Along the paths, electric and
magnetic fields vanish. Show that the Aharonov–Bohm phase is measurable only within
the forward light cone of the transient electric field, hence the effect does not allow
superluminal signalling.

∗6.15 Section 6.4 discusses the “bomb” detector of Elitzur and Vaidman and defines an operator
P as reflection through a plane passing through both half-silvered mirrors. Define the
x-axis to be perpendicular to the plane, so that P is the one-dimensional parity operator
for x. Find a unitary representation of P such that PxP † = −x and PpP † = −p,
where x and p are operators. (Hint: harmonic oscillator eigenstates are eigenstates of
P .)
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7 Quantum Measurements

In physics, we expect a theory to correspond with experiments in two ways. One correspon-
dence is obvious: the theory should correctly predict the results of experiments. But there is
another, more subtle correspondence. The theory should predict not less and not more than the
results of possible experiments. That is, the theory should predict anything that experiments
can ever test, but it should not predict anything that experiments can never test. Does a theory
describe too little? Too much? These simple questions are among the most powerful we can
ask in criticizing a theory. They have led to great progress in physics. For example, Newton, in
his mechanics, made assertions about “absolute space” and “absolute time”. Mach questioned
these and other assertions of Newton’s mechanics. How do we define motion if there is nothing
else in the universe? We must define it relative to some reference frame such as the stars in
the sky, or whatever else we take to be motionless. In empty space we could never define
motion, so absolute space and time have no meaning. Mach’s critique helped Einstein arrive
at the special and general theories of relativity. Newton’s mechanics describes too much. A
theory that describes too little is thermodynamics; it accounts only for the bulk properties of
gases. (To account for the microscopic properties of molecules in gases, we need statistical
mechanics.) The special theory of relativity comes the closest to the ideal correspondence
between theory and experiment.

Thus, we can deepen our understanding of quantum mechanics by asking how well the
physical statements of the theory apply to experiments. The discussions of Bohr and Einstein
on quantum theory, from 1927 onwards, were devoted to this question. Einstein kept trying to
show that experiments can measure more than quantum mechanics allows, i.e. that quantum
mechanics describes too little. The fact that he did not succeed does not prove that he was
wrong. For example, the two thought experiments of Chap. 4 present a new challenge to
quantum mechanics, unknown to Einstein. We also encounter (in Chap. 11) the claim that
quantum mechanics describes too much, that there is no experiment that can distinguish among
certain quantum states. (Too much is better than too little.)

We begin this chapter with a paradox concerning a measurement of the velocity of a
quantum particle. This paradox apparently implies that the Heisenberg uncertainty relations
do not completely account for what we can and cannot measure in quantum mechanics. We
resolve this paradox by treating the device for measuring velocity as a quantum system. But
can we treat a measuring device as a quantum system? Bohr treated measurements via an ad
hoc division of the world into quantum and classical parts, with measuring devices residing in
the classical part. This description served him in his discussions with Einstein, allowing him to
resolve the clock-in-the-box paradox and others. (See Sect. 2.4.) However, the division of the
world into classical and quantum parts is not well defined. Bohr never prescribed how to divide
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the world into classical and quantum parts; the division arises in practice, not in principle.1 If
so, why not let the measuring device reside in the quantum part of the world? Such a treatment
does not resolve the question of where in the world is the dividing line (a question Chap. 9
addresses) but it has an outstanding advantage: if we treat the measuring device as a quantum
system, we automatically endow it with all the limitations and possibilities of a quantum system.
We need not, as Bohr and Einstein did, face each new question of measurement by asking what
limitations quantum mechanics imposes on a classical measuring device. Moreover, a quantum
measuring device may respond in ways we never anticipated. Treating the measuring device
as a quantum system allows us to consider (in Chaps. 14–17) quantum measurements that are
unlike any classical measurements.

7.1 The Velocity Paradox

Quantum systems present much more difficult and interesting problems of measurement than
classical systems. We can make any measurement on a classical system and not disturb it, in
principle. But as Chap. 2 relates, some measurements on a quantum system must disturb it.
This fact led Heisenberg to the uncertainty relations. (See Sect. 2.3.)

What does measuring a quantum system disturb? According to the uncertainty relations,
the measured observable need not change. What changes is an observable conjugate to the
measured observable. When we measure the momentum of a particle, we assume that its
position, but not its momentum, changes. Since the momentum of a free, massive particle is
the product of its velocity and its mass, we expect that we can measure its velocity, too, without
changing it. We can measure its momentum as quickly as we like (in nonrelativistic quantum
mechanics2) so we expect that we can measure its velocity as quickly as we like, too.

However, let us consider an experiment on a free particle moving in one dimension. At
time t = 0 we know the position x(0) of the particle to an accuracy ∆x(0), from a prior
measurement. We also know its velocity v(0) to an accuracy ∆v(0) = �/2m∆x(0), consistent
with the uncertainty relations. At t = 0 we begin a more accurate measurement of the particle’s
velocity. This measurement lasts a time T . At time T we know the particle’s velocity v(T )
with an accuracy ∆v(T ) � ∆v(0). (Fig. 7.1 is a graph of v(t) and ∆v(t) versus time.) We
assume that measuring the velocity does not change it, and that T can be as short as we like.

The position and velocity of the particle are related by the Heisenberg equation of motion,
Eq. (5.17):

v(t) =
dx(t)
dt

=
i

�
[H,x] . (7.1)

We can integrate Eq. (7.1) to get

x(T ) − x(0) =
∫ T

0
v(t)dt . (7.2)

1Such phenomena as the Josephson junction, superconductivity, and magnetoresistance in metal loops show that
quantum effects are not restricted to microscopic systems. See Sects. 4.6–7.

2See Chap. 14 in regard to relativistic quantum mechanics.
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t
0 T

Figure 7.1: Graph of v(t) and ∆v(t) in the thought experiment
of Sect. 7.1.

Note that Eq. (7.2) is an operator equation. During the measurement the particle is not free,
so we cannot replace v(t) by p/m. However, if measuring the velocity does not change it, we
can replace v(t) by v(0) to get

x(T ) = x(0) + v(0)T .

We can estimate the uncertainty in x(T ) from the uncertainties in x(0) and v(0):

[∆x(T )]2 = [∆x(0)]2 + [∆v(0)]2T 2 . (7.3)

For T arbitrarily small, the uncertainty in x hardly increases as a result of the measurement;
yet the measurement decreases the uncertainty in the velocity. So once the measurement is
complete and the particle moves freely again, the product of uncertainties ∆x(T ) · ∆v(T )
violates the Heisenberg uncertainty relations. Either the Heisenberg uncertainty relations are
wrong, or we were wrong in assuming that we can measure velocity in an arbitrarily short time
without changing it. Either way, we conclude that the Heisenberg uncertainty relations do not
fully account for what we can and cannot measure in quantum mechanics.

What about the time-energy uncertainty relation? Doesn’t it apply to the velocity paradox?
According to one interpretation of the time-energy uncertainty relation, a measurement of
energy to an accuracy ∆E takes a time at least T ≥ �/∆E. Before the velocity measurement
began, the particle was free, hence a measurement of its velocity also measured its kinetic
energy. If so, we cannot assume that T is arbitrarily short or that ∆v(T ) � ∆v(0), and there
is no paradox.

However, we must be careful how we interpret the time-energy uncertainty relation. (See
Chap. 8.) Energy is a Hermitian operator, but the time t in Schrödinger’s equation is a parameter,
not an operator. There is no Hermitian operator T such that [T,H] = i� (the analogue of
[x, p] = i�). The proof is that [T,H] = i� implies thatH has no lower bound; butH = p2/2m
cannot be negative. (See Prob. 7.1.) We can derive a time-energy uncertainty relation from the
position-momentum uncertainty relation, as in Prob. 2.8, but we cannot then use it to prove
the latter relation.

7.2 A Quantum Measurement Paradigm

As a step towards treating quantum measurements, let us review a standard experiment for
measuring a quantum observable – spin. We can extract, from this experiment, a paradigm for
all quantum measurements.
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Figure 7.2: An atom passes between two large
magnets in a Stern-Gerlach apparatus to measure
the spin component Sz of the atom.

A standard experimental setup to measure spin is the Stern-Gerlach apparatus. Figure 7.2
depicts this setup schematically. An atom with z-component of spin Sz enters from the left,
along the x-axis. It encounters an inhomogeneous magnetic field B near the origin. The
Hamiltonian for the interaction of the spin with the field is [1]

Hint = −µS · B ;

it is the potential energy of a magnetic dipole of moment µS in a magnetic field B. As the
atom passes through the field, its momentum changes in accord with the Heisenberg equation
of motion:

dp
dt

=
i

�
[Hint,p] = µ∇(S · B) .

Assume thatB is parallel to the z-axis, with z-componentBz = Bz, for simplicity.3 Then if the
atom crosses the magnetic field in a time T , it acquires transverse momentum µ(∂Bz/∂z)SzT ,
proportional to the spin component Sz . A beam of atoms entering the Stern-Gerlach apparatus
splits into beams for each spin component Sz .

What, in this experiment, is essential to quantum measurement?
i) The measurement interaction lasts a limited time T . At all other times the atom and

Stern-Gerlach apparatus are distinct, independent systems.
ii) It produces a change (the deflection of the atom) that corresponds to the value of the

observable (Sz).
iii) It does not change the measured observable.
iv) In principle, the interaction time T can be very small (if ∂Bz/∂z is very large). Some-

times a fast measurement is preferable. For example, a measurement of a particle’s position

3Since the field depends on z, it cannot be exactly parallel to the z-axis – it would not satisfy Maxwell’s equation
∇ · B = 0. So the field must fringe away from the z-axis.
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may change its momentum and thus, in time, its position; then, if the measurement is not fast,
it measures a changed position.

v) The measurement is a quantum process. We treat the atom as a wave packet evolving
along a trajectory through the magnetic field and beyond. We can do so only because we wrote
down a Hamiltonian, Hint, for the measurement interaction.

If we accept i)–v) as criteria for quantum measurement, they lead us to a model (due to von
Neumann [2]) for the measurement of an observableAs. To satisfy v), we treat the measurement
via an interaction HamiltonianHint. According to iii),Hint andAs must commute. According
to ii), Hint must couple As to something that yields an observable change, like the deflection
of the atom in the measurement of Sz . The simplest coupling we can write down is AsPd,
where Pd is an otherwise independent observable. Since i) requires Hint to be effective only
during the measurement, we multiply AsPd by a coupling g(t) that is different from zero only
in an interval 0 ≤ t ≤ T , with

∫ ∞

−∞
g(t)dt =

∫ T

0
g(t)dt = g0 . (7.4)

(See Fig. 7.3.) Finally, iv) implies the limit T → 0. In this limit the measurement is termed
impulsive. Our interaction Hamiltonian is

Hint(t) = g(t)AsPd , (7.5)

and the total Hamiltonian is

H = Hd +Hs +Hint(t) . (7.6)

It includes the separate Hamiltonians of the measuring device (Hd) and of the measured system
(Hs).

How does the model work? Because Pd is a quantum operator, some other quantum
operator does not commute with it. Let the operator Qd be conjugate to Pd:

[Qd, Pd] = i� .

t

g(t)

0 T

Figure 7.3: Graph of a possible coupling g(t) in Eq. (7.4).
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We prepare the measuring device in an initial state with well defined Qd, say Qd(0) = 0, and
the measured system in a state with well defined As. According to the Heisenberg equation of
motion, the change in Qd during the measurement is

Qd(T ) −Qd(0) =
∫ T

0
dt
dQd
dt

=
∫ T

0
dt
i

�
[H,Qd]

=
∫ T

0
dt
i

�
[Hd, Qd] + g0As .

While [Qd, Hd] need not vanish, in the limit of small T the only term remaining in Qd(T )
will be g0As. At the end of the measurement, we find the measuring device in a state with
Qd = g0As. (Note that Qd, and not Pd, registers the result of the measurement, although it
is Pd that appears with As in Hint.) We can choose g0 large to get a macroscopic change
in Qd. It is convenient to identify Qd with a pointer on a measuring device, indicating the
measurement result on a dial.

So far, we have discussed quantum measurements in the Heisenberg formalism, in which
an operator As evolves according to Heisenberg’s equation of motion. An advantage of this
formalism is that the classical and quantum equations of motion for As coincide, and we
understand quantum evolution by analogy with classical evolution. We have so far assumed
that the measured system is in an eigenstate of As, so we can replace the operator As by one
of its eigenvalues. What if the measured system is not in an eigenstate of As? Chapter 9
addresses this question. (See also Prob. 7.2.)

As an application of the model, consider measuring the position of a particle via a local
interaction with a probe particle. The interaction Hamiltonian is

Hint(t) = −g(t)x · X ,

where x is the position of the particle we want to locate (corresponding toAs in Eq. (7.5)) and
X is the position of our probe (corresponding to Pd). Aside from the measurement interaction,
the particles are free; their Hamiltonians are

Hs =
p2

2m
Hd =

P 2

2M
,

where p and P are the momenta conjugate to x and X, respectively. Let g(t) equal g0/T for
0 ≤ t ≤ T , and 0 otherwise, as in Fig. 7.4. Applying the Heisenberg equation of motion, we
get

ẋ = p/m

ṗ = g(t)X
Ẋ = P/M

Ṗ = g(t)x . (7.7)

All the dynamical quantities change during the measurement. (See Prob. 7.3.) However, the
dynamics simplifies in the limit T → 0. The change in the position coordinates becomes
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Figure 7.4: Graph of g(t) in Eq. (7.7).

negligible, since

X(T ) − X(0) =
1
M

∫ T

0
Pdt ,

x(T ) − x(0) =
1
m

∫ T

0
pdt ,

and if P and p remain finite for T → 0, X and x remain constant in the same limit. We find
then that P and p change by a finite amount,

P(T ) − P(0) = g0x , p(T ) − p(0) = g0X , (7.8)

and the change in the momentum of the probe, P(T ) − P(0), yields the position x(0).

7.3 Quantum Measurements and Uncertainty Relations

Quantum measurements automatically obey the complementarity principle. Since the interac-
tion Hamiltonian for measuring As contains As, measuring As disturbs any observable that
does not commute withAs. Quantum measurements also preserve the Heisenberg uncertainty
relations. We can apply the von Neumann model to show that the uncertainty relations are
consistent, i.e. no measurement can evade them.

Let us start with a special case: the uncertainty relation for position and momentum.
Consider the position measurement of the last section. It is sufficient to consider one component
of position, say x1, and its conjugate momentum p1. Since p(T ) = p(0) + g0X, the position
measurement increases the uncertainty in p1(T ); even if ∆p1(0) vanishes, we have

∆p1(T ) ≥ g0∆X1(0) . (7.9)

We measure x1 from the change in P1/g0, so the uncertainty in the measurement of x1 cannot
be less than the uncertainty in P1/g0; and P1(0) cannot be certain because the measuring
device initially has a well defined pointer position, X1(0). Thus

∆x1(T ) ≥ ∆P1(0)/g0 . (7.10)
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By multiplying Eqs. (7.9–10) we find

∆x1(T )∆p1(T ) ≥ ∆X1(0)∆P1(0) . (7.11)

If the measuring device were classical, Eq. (7.11) would imply a violation of the uncertainty
relation. But the measuring device is itself a quantum system and ∆X1, ∆P1 satisfy the
uncertainty relation

∆X1(0)∆P1(0) ≥ �/2 . (7.12)

It follows that

∆x1(T )∆p1(T ) ≥ �/2 . (7.13)

We assumed the uncertainty relation Eq. (7.12) for X1 and P1; however, we did not assume
Eq. (7.13) for x1 and p1, we derived it from Eq. (7.12). Hence any measuring device satisfying
Eq. (7.12) confirms Eq. (7.13).

We now generalize this proof to the case of two arbitrary observables As and Bs. We
assume an interaction Hamiltonian for a measurement of As,

Hint = g(t)PdAs ,

where g(t) satisfies Eq. (7.4). During the measurement, the conjugate variable Qd evolves
from Qd(0) = 0 initially to Qd(T ) = g0As at the end of the measurement. If we infer the
value of As from the change in Qd we have, for the uncertainty ∆As,

∆As = ∆Qd/g0 .

We compute uncertainties with respect to the overall state of the measuring device and the
measured system. Let us denote this state as |Ψs,Φd〉,

|Ψs,Φd〉 = |Ψs〉 ⊗ |Φd〉 ,
where |Ψs〉 completely specifies the state of the measured system and |Φd〉 completely specifies
the state of the measuring device. It is a product state because the measuring device and
measured system are uncorrelated initially. We define the expectation value of an operator O
to be 〈Ψs,Φd|O|Ψs,Φd〉 and denote it 〈O〉.

During the measurement, any observableBs of the measured system that does not commute
with As also evolves. The Heisenberg equation of motion for Bs is

dBs
dt

= g(t)
i

�
[As, Bs]Pd .

We take the expectation value of both sides of the equation. Since the expectation value
of Pd vanishes (the pointer has no momentum initially, and Pd does not change during the
measurement), there is no change in the expectation value of Bs or of [As, Bs]; however, the
uncertainty in 〈Bs〉 is now at least

∆Bs = g0|〈[As, Bs]〉|∆Pd/� ,
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and by multiplying ∆As and ∆Bs we obtain

∆As∆Bs ≥ ∆Qd|〈[As, Bs]〉|∆Pd/� ≥ 1
2
|〈[As, Bs]|〉 ,

since ∆Qd∆Pd ≥ �/2 by assumption. (Compare Prob. 3.10(b).) Quantum measurements
preserve the uncertainty relations.

7.4 Paradox Lost

In Sects. 7.2–7.3 we have constructed quantum measuring devices to measure an observable
(e.g. position or momentum) instantaneously, without changing it, and shown that they preserve
the Heisenberg uncertainty relations. Let us now revisit the paradox of Sect. 7.1. What about
a measurement of velocity?

A free particle moving in one dimension, with momentum p and mass m, has velocity
v = p/m. We know how to measure p/m. If we apply a measurement interaction Hint =
g(t)Pdp/m to measure the velocity, however, the particle is no longer free, and the velocity is
no longer p/m. The velocity is

v =
dx

dt
=
i

�
[H,x] ;

if H = p2/2m + g(t)Pdp/m, then v = p/m + g(t)Pd/m. Clearly, it does not help if we
substitute p/m+ g(t)Pd/m for p/m in Hint; we merely find that velocity has again changed
from what it was, and that our measuring device no longer measures velocity.

We arrived at a model of quantum measurement by assuming, with von Neumann, that
coupling a measurement to an observable As does not change As. We now discover that we
cannot couple a measurement to the velocity v without changing v. Must we discard the von
Neumann model? No, the von Neumann model is correct as it applies to x and p and all other
canonical quantities.4 But, in general, it does not apply to noncanonical physical observables
such as velocity and other time derivatives of canonical observables. A measurement of a
noncanonical observable Ȧs in general changes Ȧs. (See Probs. 7.8–7.9.)

The von Neumann model has no place for noncanonical observables because the Hamil-
tonian has no place for them. There is no direct way to write down a Hamiltonian with a
coupling to a noncanonical observable such as v. However, the problem with measuring non-
canonical observables extends beyond Hamiltonian mechanics. In Lagrangian mechanics it is
straightforward to write down a coupling to v:

L =
m

2
ẋ2 +

M

2
Q̇2
d + g(t)ẋQd . (7.14)

The term g(t)ẋQd defines a measurement coupling directly to v = ẋ. If g(t) = g0/T for a time
T , the change inMQ̇d measures v. But again, v during the measurement is not what it would be
if there were no measurement; the Lagrange equations of motion yield v = v(0)− g(t)Qd/m,

4Canonical quantities are the generalized coordinates qi and momenta pi satisfying q̇i = ∂H/∂pi, ṗi =
−∂H/∂qi for some function H(qi, pi, t).
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where v(0) is the velocity at the beginning of the measurement. The Hamiltonian corresponding
to L is

H =
1

2m
[p− g(t)Qd]

2 +
1

2M
P 2
d

and the change in Pd indeed measures v, but v during the measurement is not p/m but
[p− g(t)Qd] /m.

The problem with the extra term −g(t)Qd/m in v is not that it prevents us from measuring
velocity. The problem is that it contributes to the uncertainty in v. Let ∆Qd(0) and ∆Pd(0)
denote the uncertainties in Qd and Pd, respectively, at the beginning of the measurement. If
∆Qd(0) is small, then ∆Pd(0) is large. But the measured value of v is [Pd(T ) − Pd(0)]/g0;
the uncertainty in the velocity measurement depends both on Pd(0) and, through Pd(T ), on
Qd(0). Minimizing ∆Qd(0) conflicts with minimizing ∆Pd(0), and so there is a minimum
uncertainty in the measured value of v:

∆v ≥
√

�/mT . (7.15)

(See Prob. 7.10.) Equation (7.15) resolves the velocity paradox of Sect. 7.1. Now the un-
certainty in x at time T is at least T∆v while the uncertainty in p at time T is at least m∆v,
i.e.

∆x(T ) · ∆p(T ) ≥ (T∆v)(m∆v) ≥ � ,

consistent with Heisenberg uncertainty relation. However, Eq. (7.15) can be misleading. Be-
ware! Our discussion of quantum measurements is not complete.5 The next chapter completes
the treatment of noncanonical observables.

Problems

7.1 Show that if there exists a Hermitian operator T such that [T,H] = i�, then the expec-
tation value of H = p2/2m can be negative.

7.2 For an impulsive measurement with Hint of Eq. (7.5) as its Hamiltonian, show that
〈Qd(T )〉 − 〈Qd(0)〉 = g0〈As〉, where the 〈As〉 represents the expectation value of As
in the initial state.

7.3 Compute P (T ) − P (0) exactly from Eq. (7.7) (for T nonzero) and verify Eq. (7.8) in
the limit T → 0.

7.4 Consider the Hamiltonian

H =
p2

2m
+

P 2
1

2M1
+

P 2
2

2M2
+ g(t)[xX1 + αpX2] ,

which represents two measuring devices (subscripts 1 and 2) simultaneously measuring
the position x and momentum p of a third system. (The constant α has appropriate
units.) Show that the measurements preserve the uncertainty relation ∆x∆p ≥ �/2.

5If we measure p/m via the Hamiltonian H = p2/2m+ g(t)Pdp/m, for how long does v not equal p/m?
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7.5 Consider the Hamiltonian

H =
p2

2m
+

P 2
1

2M1
+

P 2
2

2M2
+ g1(t)xX1 + αg2(t)pX2 ,

which, as in the previous problem, represents two measuring devices (subscripts 1 and
2), but here g1(t)g2(t) = 0 (with α constant). Show that the measurements preserve
the uncertainty relation ∆x∆p ≥ �/2.

∗7.6 Define

H = BzLz + bzlz + g(t)Lxlx ,

where L and l are the angular momenta of the measuring device and measured system,
respectively, and Bz , bz are magnetic fields. Show that this Hamiltonian generates a
measurement of lx, and that if lx = ly = lz = 0 initially, the measurement of lx leaves
lx = ly = lz = 0 in the final state.

7.7 Consider the Hamiltonian of Prob. 7.5, taking g1(t) = g2(t) = 1/T for 0 ≤ t ≤ T � 1
(the measurement is impulsive) and g1(t) = g2(t) = 0 otherwise. What do the changes
in P1 and P2 measure?

∗7.8 Consider an interaction Hamiltonian

Hint = g(t)
i

2�
([H,x]Pd + Pd[H,x]) , (7.16)

whereH is the total Hamiltonian p2/2m+Hd+Hint so that i[H,x]/� = ẋ. (Thus we
define H and Hint in Eq. (7.6) implicitly.) We have written the product of [H,x] and
Pd symmetrically because [H,x] could in principle contain terms not commuting with
Pd. The coupling g(t) obeys Eq. (7.4) for arbitrarily short T . Compute the change in
Qd and show that Qd(T ) −Qd(0) = ig0

∫ T
0 [H,x]dt/�, so the interaction Hamiltonian

of Eq. (7.16) does not measure ẋ.

7.9 Show that if q and p are canonically conjugate observables, a quantum measurement
of q̇ (according to Eq. (7.5) with i[Hs, q]/� in the place of As) must change q̇ unless
∂2Hs/∂p

2 = 0.

7.10 Prove Eq. (7.15), taking g(t) constant over the interval 0 ≤ t ≤ T .
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8 Measurement and Compensation

The last chapter presents von Neumann’s model for measurements of canonical quantities.
The model has many applications, and Sect. 7.4 applies it to resolve the velocity paradox of
Sect. 7.1. However, we may not be comfortable with the resolution of the paradox. Velocity is
not a canonical quantity, but it is gauge invariant: mv = p−eA/c. (See Prob. 4.3.) The model
implies that a velocity measurement lasting a time T yields v with uncertainty ∆v ≥ √

�/mT .
(See Prob. 7.10.) Yet the same model implies that we can measure momentum instantaneously,
with no minimum uncertainty, and without changing it. We can also measure p − eA/c
instantaneously, with no minimum certainty, and without changing it; A is a canonical variable.
But p − eA/c equals mv (except during the measurement) so why can’t we measure velocity
instantaneously? Likewise, in the laboratory we measure electric and magnetic fields, E and
B, not the potentials A and V that appear in the Hamiltonian, Eq. (4.7). The magnetic field
B = ∇×A is a canonical quantity, but the electric field is not (although it is gauge invariant),
because it depends on the derivative of A with respect to time: E = −(1/c)(∂A/∂t) − ∇V .
Why can’t we measure E instantaneously?

The question of measuring E troubled such physicists as Landau, Peierls, Bohr and Rosen-
feld. Rosenfeld arrived at Bohr’s institute in early 1931 just as the question had come to a
head. He ran into Gamow and asked what was new. Gamow answered with a drawing he had
just made. It showed Landau, tightly bound to a chair and gagged, while Bohr stood before
him with upraised finger, saying “Please, please, Landau, can I just get a word in!” Landau
and Peierls had come a few days before with a new paper to show Bohr, “but he does not seem
to agree,” said Gamow airily, “and this is the kind of discussion which has been going on all
the time.” Peierls had left the previous day, “in a state of complete exhaustion,” added Gamow.
Landau stayed on for a few weeks, and Rosenfeld discovered that “Gamow’s representation
of the situation was only exaggerated to the extent usually conceded to artistic fantasy” [1].
Landau and Peierls had considered measuring the electric field by sending a charged test par-
ticle through it [2]. The electric field deflects the test charge; the change in the momentum
of the charge indicates the field strength. But an accelerated charge radiates and loses an un-
known part of its momentum to the electromagnetic field. (See Prob. 8.1.) We can suppress
the radiation by reducing the charge on the test particle; then the momentum of the particle
changes more slowly, but the measurement lasts longer. An impulsive, accurate measurement
of the electric field is impossible. Bohr felt uneasy, but could not refute the claim of Landau
and Peierls.

Ultimately, Bohr and Rosenfeld did refute the claim; it took them nearly three years [3],
but they showed how to measure electric and magnetic fields instantaneously [4]. Bohr and
Rosenfeld did not treat noncanonical observables in general. We will see that in the von
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Neumann model it is straightforward to measure any noncanonical observable instantaneously;
we only have to apply the model differently to noncanonical observables. In the next section
we consider measuring energy, including kinetic energy, in von Neumann’s model. Kinetic
energy is a noncanonical observable, since it depends on the velocity v. An application of the
uncertainty relation for energy and time indicates that we cannot measure E instantaneously.
The paradox is that we can!

8.1 Paradox Regained

Numerous papers and books claim that a measurement of energy cannot take an arbitrarily
short time. They interpret the energy-time uncertainty relation, Eq. (2.10), as follows: the
faster the energy measurement, the more uncertain the result. Let us examine some arguments
for this interpretation.

i) A simple argument starts with Einstein’s equation relating energy and frequency, Eq. (2.3):
E = hν. Suppose a quantum wave takes a time T to pass through a measuring device. Since
the wave lasts a time T , its Fourier transform is large for frequencies in a range that includes
0 ≤ ν ≤ 1/T . Then ∆E = h∆ν ≥ h/T .

ii) Suppose we have a system in its ground state of energy E0. We want to prepare it in a
final state of energyE, withE in its continuous energy spectrum. We apply a perturbation that
oscillates in time with angular frequency ω = (E − E0)/�, lasting a time T . That is, it takes
us time T to measure (prepare) the final state of energy E. But the perturbation might excite
the system to a state of a different energy E′ instead. The relative probability of a transition to
a final state of energy E′ is approximately

sin2 [(E′ − E0)T/2� − ωT/2]
[(E′ − E0) − �ω]2

=
sin2 [(E′ − E)T/2�]

(E′ − E)2
. (8.1)

(See Prob. 6.11.) Figure 8.1 shows a graph of Eq. (8.1) as a function ofE′ −E. The dominant
peak, lying between −h/T and h/T , contains over 90% of the area, so with probability 90%
the final energy of the system will lie between E − h/T and E + h/T , i.e. ∆E ≥ h/T again.

iii) We may measure the kinetic energy of a particle by hitting it with a probe particle.
Consider a particle of initial energy ei and momentum pi in an elastic collision with a probe
particle of initial energy Ei and momentum Pi. For simplicity, let the particles have equal
masses m and move on a line. Since the collision conserves total energy and momentum, the
final kinetic energies of the probe particle and measured particle are Ef = ei and ef = Ei,
respectively. And since Ef = P 2

f /2m and Ei = P 2
i /2m, we measure ei or ef by measuring

Pf or Pi, respectively. Hence a measurement of either ei or ef can be impulsive and accurate.
But the more accurately we measure Pf or Pi, the greater the uncertainty in Xf or Xi, the
respective position of the probe. Without knowing where the probe particle is, we cannot know
the time of the collision. Then how long does the measurement take? If we measure Pi, we
prepare a state of energy ef = P 2

i /2m after the collision; but we must await the collision a
time T not less than ∆Xi divided by the initial speed of the probe:

T ≥ ∆Xi

Pi/m
≥ �

2Pi∆Pi/m
=

�

2∆Ei
=

�

2∆ef
. (8.2)
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Figure 8.1: Graph of Eq. (8.1).

(See Prob. 3.10.) Thus, to measure (prepare) the state of energy ef takes a time T ≥ �/2∆ef .
What if we measure Pf? We must measure Pf after the collision to obtain ei before the
collision. Even if ∆Xi vanishes, ∆xi does not, and we must wait a time

T ≥ ∆xi
pi/m

≥ �

2pi∆pi/m
=

�

2∆ei
(8.3)

for the collision. Thus a measurement of ei lasts a time T ≥ �/2∆ei.
iv) We can apply Eq. (7.15), which states that if a measurement of velocity v takes a time

T , the uncertainty in v during the measurement is ∆v ≥ √
�/mT . The uncertainty in the

kinetic energy, E = mv2/2, during the measurement is ∆E = mv∆v. Thus

(∆E)2 = m2v2(∆v)2 ≥ m2v2(�/mT ) = 2E�/T . (8.4)

To measure E (and not just bound E from above) we need ∆E ≤ E. Thus Eq. (8.4) implies

∆E ≥ 2�/T . (8.5)

Arguments i) – iv) suggest that there is no way to measure energy impulsively. From
Eqs. (8.2–3) and (8.5) we conclude

T∆E ≥ �/2 , (8.6)

with the interpretation that T is the time it takes to measureE (whetherE is the energy before,
during, or after the measurement).

Nevertheless, there are arguments against this interpretation. The Heisenberg uncertainty
relations for two operators A,B follow directly from Eq. (4.15), ∆A∆B ≥ 1

2 |〈[A,B]〉|. But
time is not an operator in nonrelativistic quantum mechanics; there is no operator T such
that [T,E] = i�. (See Sect. 7.1 and Prob. 7.1.) Hence Eq. (8.6) remains unproved. The
measurements in i) – iv) obey Eq. (8.6), but other measurements may not. Also, Eq. (8.6) is an
odd exception to the Heisenberg uncertainty relations. The other uncertainty relations refer to
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two properties of a measured system – position and momentum, etc. Eq. (8.6) refers, instead, to
a property of the measured system (energy) and a property of the measuring device (how long
the measurement lasts). An analogous interpretation of ∆p∆x ≥ �/2 would be the following:
a device to measure momentum with accuracy ∆p can be no smaller than ∆x ≥ �/2∆p.
This interpretation is false! For example, a very heavy atom in its ground state is a device
to measure photon momentum. If a photon excites the atom to a state with lifetime T , the
uncertainty in the photon energy is ∆E ≥ �/T ; hence the uncertainty in its momentum is
∆p = ∆E/c ≥ �/cT . The time the photon leaves the atom is uncertain, with uncertainty T ,
so ∆x ≈ cT and ∆x∆p ≥ �. But the size of the atom may be much less than cT .

Now consider the following interaction Hamiltonian for measuring energy:

Hint(t) = g(t)HsPd ,

where the coupling g(t) obeys
∫ T
0 g(t)dt = g0. As in Eq. (7.6), the total Hamiltonian for the

measuring device and the measured system is

H = Hd +Hs +Hint(t) .

As long as Hint is nonzero, we cannot identify Hs with the energy of the measured system.
But the equation of motion for Qd,

dQd
dt

=
i

�
[H,Qd] =

i

�
[Hd, Qd] + g(t)Hs ,

implies that the total change in Qd during the measurement is

Qd(T ) −Qd(0) =
i

�

∫ T

0
dt[Hd, Qd] + g0Hs ; (8.7)

the second term on the right side of Eq. (8.7), divided by g0, is the energy of the system before
and after the measurement. Moreover, the time T is arbitrary; even if [Qd, Hd] is nonzero, for
T small we obtain g0Hs as the change inQd during the measurement. We measure the energy
of the system in an arbitrarily short time, and the final energy is unchanged from the initial
energy!

This conclusion [5] contradicts Eq. (8.6) and its interpretation. If it is correct, then Hint

must represent a measurement we have so far not considered. What is this measurement?

8.2 Compensating Forces

Section 7.4 describes a measurement of velocity v according to the interaction Hamiltonian

Hint = g(t)
p

m
Pd , (8.8)

and shows that measuring v changes v. Yet if we calculateQd(T )−Qd(0) with this interaction
Hamiltonian, we find

Qd(T ) −Qd(0) =
i

�

∫ T

0
dt[Hd, Qd] + g0

p

m
.
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Even if [Hd, Qd] = 0, for T small we can neglect the integral; then Qd measures p/m, a
constant of the motion equal to v before and after the measurement. This velocity measurement
is analogous to the energy measurement at the end of the last section. What measurement does
it represent?

We sometimes gain insight into a quantum problem by considering – with great care –
the corresponding classical problem. The classical problem of measuring velocity (unlike the
quantum problem) allows us to start with a Lagrangian, in which velocities appear explicitly.
Suppose we try to measure the velocity v of a particle of mass m via a probe particle of mass
M . A possible Lagrangian is

L =
1
2
MV 2 +

1
2
mv2 + g(t)v · X .

(Compare Eq. (7.14).) L contains, besides the kinetic energies of the two particles, an inter-
action term that couples v to the position X of the probe. This term resembles the interaction
Hamiltonian of Eq. (8.8). L leads to the following equations of motion:

d

dt
(MV) = g(t)v (8.9a)

d

dt
[mv + g(t)X] = 0 . (8.9b)

According to Eq. (8.9a), the change in MV during the measurement is exactly v. If v were a
constant of the motion, Eq. (8.9a) would represent a measurement of v. However, Eq. (8.9b)
tells us that v is not a constant of the motion – it changes drastically, although it returns
to its original value at the end of the measurement. Even so, we have solved the classical
problem, because classical physics allows us to measure g(t)X/m, the change in v during the
measurement, as well asMV. But we have not solved the quantum problem, because quantum
physics does not allow us to measure both X and MV, and we need both to obtain v.

We might try to change Eq. (8.9b) to make v a constant of the motion. But v cannot be
a constant of the motion if it couples to anything. On the other hand, we can try changing
Eq. (8.9a) so that dMV/dt equals v+g(t)X/m, which is a constant of the motion. By adding
a term to L we get a Lagrangian L′

L′ = L+
1

2m
[Xg(t)]2

=
1
2
MV 2 +

1
2
mv2 + g(t)v · X +

1
2m

[Xg(t)]2 ,

leading to the equations of motion

d

dt
(MV) = g(t) [v + g(t)X/m] (8.10a)

d

dt
[mv + g(t)X] = 0 . (8.10b)

Now dMV/dt equals v + g(t)X/m, still a constant of the motion since Eqs. (8.9b) and
(8.10b) are identical. The total change in MV during the measurement equals the velocity v
before and after the measurement. Thus, we can measure v by arranging for an additional force
[g(t)]2X/m to act on the probe; this force compensates for the uncontrolled change in v during
the measurement by inducing the same change in MV, so the total change in MV equals v.
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The force is like a time-dependent spring acting on the probe particle. Since it depends on X
it is totally uncertain; however, we don’t need to know what it is in order to measure v.

The Hamiltonian corresponding to L′ is

H =
1

2M
P 2 +

1
2m

[p − g(t)X]2 − 1
2m

[Xg(t)]2

=
P 2

2M
+

p2

2m
− g(t)

p
m

· X ; (8.11)

it is identical to the Hamiltonian for measuring position in Sect. 7.2 except that p/m has taken
the place of x in the interaction term. The two equivalent expressions for H in Eq. (8.11)
show that a measurement of v, including the compensating force on the probe, is identical to
a measurement of p/m. The change in P during the measurement yields p/m, which is the
velocity before and after the measurement. (See also Prob. 8.4.) So measuring velocity is
indeed as simple as measuring momentum.

8.3 Quantum Measurements of Noncanonical Observables

It is straightforward to generalize this velocity measurement; once we know how to measure
velocity, we know how to measure any noncanonical variable. Let A denote a noncanonical
observable of a system before, during and after a measurement. In general, the definition of A
involvesH , the total Hamiltonian of the system and measuring device, including an interaction
Hamiltonian, as well as canonical observables of the system and their commutators with H .
Because A is a noncanonical observable, it changes during the measurement. Let As denote
the same observable before and after a measurement. The difference in the definition ofAs and
A is the following: everywhere that H appears in the definition of A, Hs takes its place in the
definition ofAs. For example, ifA = [H,O] for some operatorO, thenAs = [Hs, O]. Yet the
prescription for measuring a noncanonical variable is to put As, and not A, in the interaction
Hamiltonian:

Hint(t) = g(t)AsPd .

Although As differs from A during the measurement, at the beginning and end of the mea-
surement A = As. We now summarize the general treatment of noncanonical observables as
follows:

i) The total Hamiltonian for the measurement is H = Hs +Hd + g(t)AsPd. In general, H
entails compensating forces on the measuring device.

ii) The value of the noncanonical observable is the same before and after the measurement,
although its definition changes during the measurement.

iii) The measurement yields the value of the noncanonical observable before and after, not
during, the measurement.

So, if we only interpret it properly, von Neumann’s model extends to measurements of
noncanonical variables. In the next section we apply the model to the problem of measuring
the electric field impulsively (one of the problems that Bohr and Rosenfeld solved).
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For any noncanonical observable, Hint entails compensating forces on the measuring de-
vice. The Hamiltonian often hides these compensating forces, but they appear in the equations
of motion for the noncanonical observables. There may also be compensating forces in mea-
surements of canonical observables. For example, Sect. 7.2 discusses a measurement of the
position of a particle using a probe particle and the interaction HamiltonianHint = −g(t)x·X.
This measurement yields x in the limit of an impulsive measurement. However, we can obtain
the average value of x during a time T from a measurement that is not impulsive. The Hamilto-
nian for such a measurement contains, in addition toHint(t), a term representing compensating
forces on the probe particle. The compensating forces depend on Hs. (See Probs. 8.6 and
8.7.)

How do we know when a nonimpulsive measurement ofAs, a canonical variable, requires
compensating forces? Consider the commutator [[As, H], As]. It contains the commutator
[As, H], which is proportional to Ȧs. If Ȧs does not commute withAs, i.e. if [[As, H], As] = 0,
then Ȧs does not commute with the measurement interaction Hint(t) = g(t)AsPd; thus the
measurement changes the evolution of As(t) from what it would have been in the absence of
the measurement, and the measurement requires compensating forces.

8.4 Measuring the Electric Field

In this treatment of noncanonical observables, we do not have to invent compensating forces for
each new measurement; the compensating forces come out automatically. Thus the derivation
of measurement interactions is simpler. To illustrate the treatment, we can show how to measure
the electric field impulsively [6], as did Bohr and Rosenfeld.

Suppose we want to measure Ex. Following Bohr and Rosenfeld, we measure Ex(x)
folded with a rigid charge distribution: our measuring device is a heavy, charged sphere, of
diameter D, in the electric field. The sphere is free to move only in the x-direction; let X
denote the coordinate of its center of mass. The Hamiltonian for the measuring device is

Hd =
P 2

2M
,

with [X,P ] = i�. We treat the electromagnetic field in the Coulomb gauge ∇ · A = 0. In
this gauge, the scalar potential A0 = V is the instantaneous Coulomb potential arising from
any charges; it decouples from the radiation field [7]. (See Probs. 8.8–9.) The Hamiltonian
for the radiation field is a sum over modes with propagation vectors k and angular frequencies
ω = ck = c|k|:

Hrad =
1
2

∑
k

[
Πk · Π−k + ω2Ak · A−k

]
; (8.12)

hereΠk = dA−k/dt is the momentum conjugate to the field coordinateAk and [Ak,i,Πk′,j ] =
i�(δij − kikj/k

2)δk,k′ . (See Prob. 8.11.) The commutation relations are unusual because
Ak,1, Ak,2 and Ak,3 are not all independent degrees of freedom: the gauge condition implies
k · Ak = 0, so for each wave vector k there are only two degrees of freedom, ε1 · Ak and
ε2 · Ak, where ε1 and ε2 are unit vectors orthogonal to k. Equivalently, we can write

[εi · Ak, εj · Πk′ ] = i� δijδk,k′ .
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For simplicity, we assume that there are no charges aside from the test charge. Then V = 0
and the electric field is proportional to the canonical momentum; we have1

Π(x) =
1

4πc2
d

dt
A(x) = − 1

4πc
E(x) .

Then for measuring Ex(x) our prescription tells us to couple the measuring device to the
momentum Πx(x). The coupling includes the charge distribution ρ(x) of the sphere, since we
measure Ex folded with this rigid charge distribution. So the interaction Hamiltonian is

Hint = −g(t)X
∫
d3xΠx(x)ρ(x) = −g(t)X

∑
k

ρkΠk,x , (8.13)

where the ρk are the Fourier components of the charge distribution, and g(t) is a constant g0/T
during an interval 0 ≤ t ≤ T . The equations of motion for H = Hd +Hrad +Hint are

dX

dt
=

P

M
dP

dt
= g(t)

∑
k

ρkΠk,x

dAk

dt
= Π−k − g(t)Xρk [ε1,xε1 + ε2,xε2]

dΠk

dt
= − ω2A−k , (8.14)

where ε1,x and ε2,x are the x-components of ε1 and ε2, respectively. (See also Prob. 8.12.) In
the impulsive limit, X and Πk,x do not change (since P and A−k,x remain finite). Thus the
change in P over the course of the measurement is g0

∑
k ρkΠk,x. Now Ex changes during

the measurement (although Πx does not) but before and afterwards it is proportional to Πx, so
the change in P measures

∫
d3xEx(x)ρ(x) before and after the measurement.

To find out what compensating forces act on the charge, we can compute the Lagrangian
corresponding to H:

L =
M

2

(
dX

dt

)2

+
1
2

∑
k

[
d

dt
Ak · d

dt
A−k − ω2Ak · A−k

]

+ g(t)X
∑
k

ρ−k
dAk,x

dt
+

1
2

[g(t)X]2
∑
k

ρkρ−k[1 − k2
x/k

2] .

FromLwe can see that the compensating force on the charge must be harmonic with a negative
spring constant κ:

κ = − [g(t)]2
∑
k

ρkρ−k[1 − k2
x/k

2] . (8.15)

If the measurement is not impulsive but lasts a time T , we require an additional compensating
force, and κ changes to

κ = − [g(t)]2
∑
k

ρkρ−k[1 − k2
x/k

2]
sinωT
ωT

. (8.16)

1In this book (as in Jackson, op. cit.) we use Gaussian units.
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Then the change in P measures what the average value of
∫
d3xEx(x)ρ(x) would have been

in the absence of a measurement. (See Prob. 8.13.) From Eq. (8.16) we learn what impulsive
means for this measurement. We assume that Πk does not change during the measurement
(since T is short and A−k is finite). But this assumption is not consistent with Eq. (8.14) if ω
is arbitrarily large. It is consistent with Eq. (8.14) for ωT � 1 (as we see by combining the
equations of motion for Πk and A−k) and, indeed, the condition ωT � 1 reduces Eq. (8.16)
to Eq. (8.15). When does this condition hold? The measuring device cannot couple to modes
with wavelengths that are much smaller than the size D of the rigid charge distribution, i.e.
to frequencies that are much larger than c/D. The decoupling of frequencies greater than
about c/D implies the condition ωT � 1 if D � cT . Thus if D � cT , the measurement is
impulsive.

As noted in the last section, measurements of canonical quantities, too, may require com-
pensating forces. In particular, measurements of canonical fields – including the magnetic
field – may require compensating forces. Every measurement, even an impulsive measure-
ment, lasts a time T > 0. But for any T , there are modes with periods much shorter than
T . If the measurement couples to these modes, it will yield time-averaged values and require
compensating forces.

8.5 Energy and Time

Section 8.2 indicates that it is an error to interpret ∆T in

∆E∆T ≥ �/2 (8.17)

as the time it takes to measure energy with uncertainty ∆E. Sect. 8.2 also suggests the source
of the error: If a measurement lasts a time ∆T , then the uncertainty in the energy during the
measurement satisfies Eq. (8.17). However, the uncertainty in the energy before and after the
measurement need not satisfy Eq. (8.17). On the other hand, an uncertainty relation for energy
and time is at the heart of the clock-in-the-box paradox of Sect. 2.4. How do we interpret it?

As noted in Sect. 8.1, the other Heisenberg uncertainty relations refer to two properties of a
measured system, such as position and momentum. To conform to them, Eq. (8.17) must refer
to the time of the measured system, not of the measuring device. What defines the time of the
measured system? An event – for example, a quantum jump – defines a time of the system. So
does an observable that changes smoothly in time – its evolution measures time. We call this
time the internal time of the system to distinguish it from the external time of the measuring
device. If we review the clock-in-the-box paradox as well as arguments i)–iv) for Eq. (8.6) and
its interpretation, we find they are compatible with Eq. (8.17) if T refers to internal time.

It is not hard to show rigorously that this interpretation is correct. LetAs be some observable
of a system that changes in time. For example, As could be the position of a particle. We
define the internal time of the system to be the operator

T =
As

〈dAs/dt〉 = �
As

|〈[As, Hs]〉| ,
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where Hs is the Hamiltonian of the system. The uncertainty in this time is

∆T = �
∆As

|〈[As, Hs]〉| . (8.18)

For example, if a particle moves at constant speed v, the uncertainty in the time it defines by
its motion is ∆x/v. If we multiply Eq. (8.18) on both sides by the uncertainty in the energy of
the system, ∆E = ∆Hs, we have

∆T∆E = �
∆As∆Hs

|〈[As, Hs]〉| .

Equation (4.15) implies that ∆As∆Hs ≥ |〈[As, Hs]〉|/2, so Eq. (8.17) follows.
Sections 8.1–2 show how to measure the energy of a system accurately in arbitrarily

short external time. These sections tacitly assume that the Hamiltonian Hs of the system
is already known. If the Hamiltonian is not known, neither is the interaction Hamiltonian
Hint = g(t)HsPd assumed for the energy measurement; then the conclusions of Sects. 8.1–2
do not apply, and a measurement of energy to accuracy ∆E does require [8] a minimum time
∆T , where ∆E∆T ≈ �. Indeed, even if we think we know the Hamiltonian Hs, we may
be mistaken; then an arbitrarily short measurement would not yield the correct energy and we
would also not discover our mistake.

This minimum time ∆T is internal time. The internal time T , unlike the external time,
depends onHs. A measurement of energy requires a minimum time ∆T because a system with
Hamiltonian Hs evolves in time ∆T according to the unitary transformation e−iHs∆T/� ≈
1 − iHs∆T/�. If Hs is unknown, we estimate it from the second term in this expansion,
which is proportional to ∆T . So again, it is the system’s internal time – the time defined by
its evolution – that appears in the uncertainty relation for energy and time.

Problems

8.1 (a) Suppose we measure the electric field E inside a capacitor by sending a charged test
particle through it. (See Fig. 8.2.) Assume first that the particle does not radiate. Show
that the uncertainty in the measured value of the field strength is ∆p/eT , where p is the
transverse momentum of the particle, e its charge and T the time it takes to pass through
the capacitor. (Neglect fringing of the electric field outside the capacitor.) Thus for
large enough e, an accurate measurement of the electric field could be arbitrarily short.
(b) The uncertainty ∆x in the transverse position of the particle cannot be greater
than the separation of the the capacitor plates; the particle must not touch the plates.
Show that ∆p ≤ m∆x/T and that the transverse acceleration a of the particle satisfies
a ≤ ∆x/T 2.
(c) According to Larmor’s nonrelativistic formula [9], the rate at which a particle of
charge e and acceleration a radiates energy is 2e2a2/3c2 (where c is the speed of
light). Show that this rate implies a transverse momentum loss, over time T , of about
2e2∆x/3c3T 2. Since the momentum loss is uncertain, the uncertainty in the measure-
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E

{∆x

Figure 8.2: An experiment (Prob. 8.1) to measure the strength of the electric field E
in a capacitor.

ment of the transverse electric field is not ∆p/eT but

1
eT

[
∆p+

2
3
e2

c3
∆x
T 2

]
.

Show that the uncertainty is then greater than
√

�c/(cT )2, regardless of e, as in the
Landau-Peierls paper [10]. (By contrast, Bohr and Rosenfeld [11] considered extended
test bodies and did not use Larmor’s formula.)

8.2 The neutral kaons (K-mesons) KL and KS have slightly different masses mL and mS

and very different lifetimes τL and τS :

mL/mS − 1 ≈ 10−14 , τL/τS ≈ 580 .

We can treat these mesons as mass eigenstates |KL〉 and |KS〉 that mix through strong
and electromagnetic interactions.
(a) Show that the relative phase of any superposition of |KL〉 and |KS〉 is in principle
measurable.
(b) Assume

|KL〉 =
1√
2

[|Ko〉 − |K̄o〉] , |KS〉 =
1√
2

[|Ko〉 + |K̄o〉] .
Show that, without decay, the state |Ko〉 would evolve into the state |K̄o〉 in a time
T = π�/(mL −mS)c2 ≈ 5.9 × 10−10 sec. (But τS ≈ 0.9 × 10−10 sec.) As defined
here, |KL〉 and |KS〉 are also eigenstates of CP . But experiments show that neutral
kaon interactions are not quite invariant underCP , so |KL〉 and |KS〉 are not quite these
linear combinations. It follows from the spin-statistics theorem [12] that the interactions
are also not invariant under time reversal.

∗8.3 Figure 8.3 shows an experiment [13] for measuring the speed of a charged particle.
Initially, two heavy capacitors of length L move with speed V up the y-axis. The
particle, of charge e, moves parallel to the x-axis with speed vx (to be measured). The
capacitors exert a force of magnitude eE on the particle, either to the right (inside the
first capacitor) or to the left (inside the second capacitor).
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EL
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V

V
x

y

Figure 8.3: An experiment (Prob. 8.3) to measure the trans-
verse speed of a charged particle.

(a) The momenta of the particle and capacitors change during the experiment. Use energy
and momentum conservation to show that the forward momentum of each capacitor
changes. But the force between the capacitors and the particle is, by assumption, parallel
to the x-axis; how can the y-component of the momenta change? Resolve this paradox.
(b) Assume that the mass m of the particle is much smaller than the mass of either
capacitor, that L is large (thus we can neglect the fringing of the electric field of the
capacitors), and that the speed of the particle is always much smaller than V . Neglecting
terms of higher order in vx/V , etc., show that the initial speed vx of the particle equals
KV/eEL− eEL/2mV , where K is the change in kinetic energy of the first capacitor
(initial minus final kinetic energy). Thus we can infer vx from V , K, e, E, L and m.
(c) The first capacitor changes the transverse velocity of the particle. Show that the
second capacitor restores the transverse velocity to its initial value vx, and that the time
of the measurement can be arbitrarily short.

8.4 Consider the Hamiltonian

H ′ =
P 2

2M
+

p2

2m
+ g(t)

p
m

· P ,

which differs from H in Eq. (8.11) only in that X rather than P represents the pointer.
Show that, in the limit of an impulsive measurement, the change in X measures dx/dt−
g(t)P/m, which is a constant of the motion and equal to v = dx/dt before and after
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the measurement. Thus, in this limit, H ′ and H lead to equivalent measurements with
compensation. Why are the measurements equivalent only in the limit of an impulsive
measurement?

8.5 Argument iii) of Sect. 8.1 shows how to measure the energy of a particle by hitting it
with a probe particle. Consider the interaction Hamiltonian

Hint =
X
T

· x [δ(t) − δ(t− T )] − X2

2mT 2 ,

for a free particle of mass m. Here x is the coordinate of the free particle and X is
the coordinate of a probe particle. Assume that X is nearly constant during the interval
0 ≤ t ≤ T . Show that the momentum P conjugate to X yields a measurement of the
velocity, and hence the energy, of the measured particle, and that the second interaction
at time t = T restores to the measured particle its original velocity. Thus we can evade
the conclusion of this argument (Eq. (8.6) and its interpretation).

8.6 Consider a Hamiltonian to measure the average velocity v = dx/dt of a particle over a
time T :

H =
P 2

2M
+

p2

2m
− xX

T
+
X2

12
.

Show, in the limit of large M , that P (T ) − P (0) corresponds to the average velocity
[x(T ) − x(0)]/T that the particle would have if there were no measurement, not the
average velocity that the particle does have during this measurement.

8.7 Consider the Hamiltonian

H =
P 2

2M
+
p2 + x2

2
− g(t)Xp− [g(t)X]2

sinT − T

2T
,

of a harmonically oscillating particle of unit mass and angular frequency. The coupling
g(t) is a constant g0/T during the interval 0 ≤ t ≤ T .
(a) In the approximationM � g2

0/T
2, show that the changeP (T )−P (0) is proportional

to what the average velocity dx/dt of the particle would have been during the time
interval, if there had been no measurement.
(b) Show that the corresponding Lagrangian contains a harmonic oscillator potential
for the coordinate X of the measuring device, with negative spring constant equal to
−[g(t)]2(sinT )/T .

∗8.8 (a) Quantize A(x) and Π(x) in a cubical box of side L with periodic boundary condi-
tions, in the gauge ∇ · A = 0. Assume that no charges are present. Define the Fourier
modes

A(x) =
2c

√
π

L3/2

∑
k

Ake
ik·x
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and

Π(x) =
1

2c
√
πL3/2

∑
k

Πke
−ik·x +

1
4π

∇V ,

where Ak = Ak,1ε1 + Ak,2ε2, Πk = Πk,1ε1 + Πk,2ε2, and ε1, ε2 are unit vectors
orthogonal to k. Derive Eq. (8.12) starting from the density of energy in the electro-
magnetic field, (E2 +B2)/8π, and assuming V = 0.
(b) Starting from the Lagrangian density for the electromagnetic field, including inter-
action with a charge density ρ(x) and current density J(x),

L(x) = − 1
16π

FαβF
αβ − 1

c
JαA

α

=
1
8π

[
1
c2

(
∂A
∂t

)2

− 1
2
(∇ × A)2 + (∇V )2 +

2
c
∇V · ∂A

∂t

]

+
1
c
J · A − ρV

(with indices α and β summed), derive the Hamiltonian density H(x):

H(x) = 2πc2Π2 − c∇V · Π +
1

16π
(∇ × A)2 − 1

c
J · A + ρV .

What are the degrees of freedom in H(x)? Show, via the Lagrange equations of motion,
that V is a function of ρ and not an independent degree of freedom. Show from this fact
and from the gauge condition ∇ · A = 0 that the Fourier expansions in (a) contain all
the degrees of freedom in A and Π.
(c) Using the Fourier expansions in (a), show that H =

∫ H(x)d3x is

H = Hrad − 2
√
π

L3/2

∑
k

∫
Ak · J(x)eik·xd3x+

1
2

∫
ρV d3x (8.19)

if ρ(x) and J(x) are localized. (For Hrad see Eq. (8.12).)

∗8.9 In the Coulomb gauge, the scalar potential V is the instantaneous (i.e. not retarded)
Coulomb potential of all charges. How can such a potential, which propagates instan-
taneously, be consistent [14] with relativistic causality?

8.10 The Fourier modes Ak in Eq. (8.12) and Prob. 8.8(a) are not all independent degrees of
freedom. To eliminate the redundant degrees of freedom, we defineak = ak,1ε1+ak,2ε2
where

ak,i =
√

ω

2�
Ak,i +

i√
2ω�

Π−k,i .

(a) From the Fourier expansion of A(x) in Prob. 8.8(a) derive the constraint A−k = A†
k

and show that

Ak =

√
2ω
�

(
ak + a†

−k

)
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automatically satisfies this constraint. Derive

A(x) =
2c

√
π�

L3/2

∑
k

1√
2ω

[
ake

ik·x + a†
ke

−ik·x
]

and

Π(x) =
i
√

�

2c
√
πL3/2

∑
k

√
ω

2

[
a†
ke
ik·x − ake

−ik·x
]

+
1
4π
V .

Compare the expression for Π(x) with Eq. (3.2).
(b) Derive the commutation relations

[ak,i, a
†
k′,j ] = δk,k′δij .

(c) Show that Hrad in Eq. (8.12) formally equals

Hrad =
∑
k

�ω

(
a†
k · ak +

1
2

)
,

a sum of harmonic oscillators. The sum over all modes k of the ground state energy
�ω/2 diverges, but a finite part of this divergence (the Casimir effect) has experimental
significance [15].

8.11. Show that the commutator [Ak,i,Πk′,j ] = i�δijδk,k′ (with i, j = 1, 2, 3) is incompatible
with the constraint ∇ · E = 0 and with the gauge choice ∇ · A = 0. Show that the
commutator [Ak,i,Πk′,j ] = i�(δij − kikj/k

2)δk,k′ is compatible with ∇ · E = 0 and
with ∇·A = 0 and that, in the gauge ∇·A = 0, the two commutators lead to equivalent
equations of motion.

8.12. (a) Derive Eq. (8.14).
(b) Show that the equation of motion for Ak can be written

dAk,x

dt
= Π−k,x − g(t)Xρk(1 − k2

x/k
2) ,

dAk,y

dt
= Π−k,y + g(t)Xρkkxky/k2 ,

dAk,z

dt
= Π−k,z + g(t)Xρkkxkz/k2 .

∗8.13 Derive Eq. (8.16). (Note Prob. 8.7.)

∗8.14 Define the vacuum of the electromagnetic field to be the state |0〉 such that ak,i|0〉 = 0
for all k and i. (Prob. 8.10 defines ak,i, and |0〉 is the ground state of all the harmonic
operators in Prob. 8.10(c).) Define a normalized distribution

ρD(x) =
e−|x|2/D2

π3/2D3

and an operator ED =
∫
d3xE(x)ρD(x). Prove that

〈0|E2
D|0〉 =

4�c

πD4 .



120 8 Measurement and Compensation

References

[1] L. Rosenfeld, in Niels Bohr and the Development of Physics, ed. W. Pauli (London: Pergamon
Press), 1955, pp. 70–95, cf. p. 70; cited in WZ p. 477.

[2] L. Landau and R. Peierls, Z. Phys. 69 (1931) 56; trans. in Collected Papers of Landau, ed. D. ter
Haar (New York: Gordon and Breach), 1965, pp. 40–51, and reprinted in WZ pp. 465–76.

[3] See A. Pais, Niels Bohr’s Times in Physics, Philosophy, and Polity (Oxford: Clarendon Press),
1991, p. 359, and L. Rosenfeld, op. cit., p. 77.

[4] N. Bohr and L. Rosenfeld, Det Kgl. Danske Vid. Selsk. Mat.–fys. Medd. 12, no. 8 (1933); trans.
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9 Quantum Cats

Following von Neumann, we have defined a general quantum measurement by treating the
measuring device as a quantum system. Quantum measurements are an essential tool for
investigating quantum mechanics, but they lead to a paradox. We have avoided this paradox
by discussing quantum measurements in the Heisenberg formalism. Heisenberg’s equations
of motion are convenient because they are identical to the corresponding classical equations
of motion, but the identity is only formal and obscures the paradox. In this chapter, we look at
quantum measurements in the Schrödinger formalism, and the paradox hits us over the head.

The paradox is not a mere artifact of the von Neumann model. It arises from the division of
the world into quantum and classical parts, with measuring devices residing in the classical part.
But even if the measuring devices reside in the quantum part – as in quantum measurements
– the division remains, for observers reside in the classical part; observations are actual, not
just possible. The division of the world into classical and quantum parts is paradoxical. A
revolution replaces an old system with a new one; but in quantum mechanics, the new system
depends on the old one, classical mechanics. Quantum mechanics is an unfinished revolution.

9.1 Schrödinger’s Cat

The paradox can arise in any quantum measurement. For example, consider an atom with
spin �/2. An interaction Hamiltonian for measuring the z-component of the spin of the atom,
Sz = �σz/2, is

Hint(t) = g(t)PdSz . (9.1)

The momentum Pd is conjugate to the coordinateQd of the measuring device. The measuring
device could be a Stern-Gerlach apparatus, as in Sect. 7.2; then Qd would correspond to the
transverse deflection of the atom. However, we are not concerned here with the apparatus; we
simply identify Qd with the position of a pointer on a measuring device. As in Eq. (7.4), g(t)
is nonzero only for 0 ≤ t ≤ T and satisfies

∫ T

0
dt g(t) = g0 .

We assume that the measurement is impulsive (T → 0) so that we can regard Hint as the total
Hamiltonian during the measurement. Then in the Heisenberg formalism, Qd(T ) −Qd(0) =∫ T
0 dt Q̇d(t) = g0Sz .

Quantum Paradoxes: Quantum Theory for the Perplexed. Y. Aharonov and D. Rohrlich
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN 3-527-40391-4
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In the Schrödinger formalism, quantum states evolve in time. Suppose the initial spin state
of the atom is | ↑〉, where | ↑〉 and | ↓〉 represent spin up and down the z-axis, respectively. Let
the initial state of the measuring device be sharply peaked around Qd = 0, and denote it |0〉.
The combined initial state is

|Ψ(0)〉 = | ↑, 0〉 ≡ | ↑〉 ⊗ |0〉 .

The time evolution operator during the measurement (when Hint dominates the rest of the
Hamiltonian) is

U(T, 0) = e−i ∫ T
0 dt Hint(t)/� = e−ig0Pdσz/2 , (9.2)

When U(T, 0) acts on the initial state |Ψ(0)〉, the operator σz reduces to 1 because |Ψ(0)〉 is
an eigenstate of σz with eigenvalue 1. Then

|Ψ(T )〉 = U(T, 0) |Ψ(0)〉
= e−ig0Pdσz/2 | ↑, 0〉
= e−ig0Pd/2 | ↑, 0〉
= | ↑, g0�/2〉 ,

i.e. the pointer is displaced by g0�/2. (See Eq. (5.7).) Likewise, if the initial spin state of the
atom is | ↓〉, the combined initial state is | ↓, 0〉 ≡ | ↓〉⊗|0〉 and evolves during the measurement
to the state | ↓,−g0�/2〉. The spin Sz does not change, while the pointer on the measuring
device shifts in proportion to Sz , whatever it is – just as in the Heisenberg formalism.

Now what if the initial spin state of the atom is neither | ↑〉 nor | ↓〉 but a superposi-
tion of the two? For example, the initial spin state of an atom polarized along the x-axis
is (| ↑〉 + | ↓〉) /√2. Let it interact with a measuring device in the state |0〉 as before; the
combined initial state is

|Ψ(0)〉 =
1√
2

[| ↑〉 + | ↓〉] ⊗ |0〉 =
1√
2

[| ↑, 0〉 + | ↓, 0〉] . (9.3)

The time evolution operator U(T, 0) is linear, so the state at the end of the measurement is

|Ψ(T )〉 =
1√
2

[ | ↑, g0�/2〉 + | ↓,−g0�/2〉 ] . (9.4)

What does this state represent? It represents nothing that we have ever encountered: a measur-
ing device in a superposition of two orthogonal states, corresponding to two different values
of Sz . We are used to superpositions of quantum systems, but not of pointers – we expect the
pointer of a measuring device to be in a definite position.

Clearly, our treatment of quantum measurements is incomplete; we cannot leave the mea-
suring device in a superposition of states. But clearly, quantum mechanics offers no way to
reduce a superposition of pointer positions to a definite position. The Schrödinger equation
implies that the time evolution operator U(T, 0) is unitary and linear. (See Sect. 5.5.) Since it
is linear, it preserves superpositions, as we just saw. Since it is unitary, it preserves the scalar
product between any two states. If U(T, 0) could evolve the initial state |Ψ(0)〉 in Eq. (9.3)
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sometimes to |Ψ(T )〉 = | ↑, g0�/2〉 and sometimes to |Ψ(T )〉 = | ↓,−g0�/2〉, then U(T, 0)
could evolve the same initial state |Ψ(0)〉 to two final states that are orthogonal to each other.
Unitarity forbids such evolution.

Unitary evolution cannot reduce the superposition of pointer positions, so von Neumann
postulated a second kind of time evolution: when a measurement is complete, the superposi-
tion of positions collapses to a definite position. According to this “collapse postulate”, the
superposition |Ψ(T )〉 in Eq. (9.4) then collapses into one of the two product states, | ↑, g0�/2〉
or | ↓,−g0�/2〉, with equal probability. The collapse postulate states that if a measurement
leaves the measuring device and measured system in a superposition of product states, the su-
perposition automatically collapses. The probability of each product state equals the absolute
value squared of its coefficient in the superposition. Thus quantum measurements confirm the
statistical predictions of quantum mechanics.

But when is a measurement complete? What is a measuring device? The collapse postulate
leaves these questions open. For example, could the measuring device be another spin? Let
us apply Hint in Eq. (9.1) as follows: alongside Sz = σz/2 which represents the atomic spin,
we define σdy and σdz as Pauli spin matrices for the “measuring device”. We set Pd = σdy and
g0 = π/2; the initial state of the “measuring device” will be |0〉d = (| ↑〉d + | ↓〉d)/

√
2. The

time evolution operator U(T, 0) in Eq. (9.2) is now

U(T, 0) = e−iπσzσ
d
y/4 , (9.5)

and rotates the “measuring device” in the xz-plane by ±π/2. If the atomic spin state is | ↑〉,
then U(T, 0) is

U(T, 0) = e−iπσd
y/4 ,

and the final state of the two spins is | ↑, ↓〉 ≡ | ↑〉 ⊗ | ↓〉d. If the atomic spin state is | ↓〉, the
final state is | ↓, ↑〉 ≡ | ↓〉 ⊗ | ↑〉d; and if the initial atomic spin state is (| ↑〉 + | ↓〉)/√2, the
final state of the two spins is

|Ψ(T )〉 =
1√
2

(| ↑, ↓〉 + | ↓, ↑〉) . (9.6)

The state |Ψ(T )〉 in Eq. (9.6) is entangled. We can experimentally verify that the collapse
postulate does not apply to |Ψ(T )〉. (See Prob. 9.1.) The collapse postulate does not apply
to this “measuring device”, but it conceivably applies to more complicated systems. How
complicated? Where is the dividing line between unitary time evolution and collapse? The
same questions arise in regard to Bohr’s description of the measurement process.

Schrödinger dramatized the question with a thought experiment [1]: “A cat is placed in
a steel chamber, together with the following hellish contraption (which must be protected
against direct interference by the cat): In a Geiger counter there is a tiny amount of radioactive
substance, so tiny that maybe within an hour one of the atoms decays, but equally probably
none of them decays. If one decays then the counter triggers and via a relay activates a little
hammer which breaks a container of cyanide.” (See Fig. 9.1.) So after an hour there is an
equal chance of finding the cat alive or dead. Schrödinger’s initial state |Ψ(0)〉,

|Ψ(0)〉 = |undecayed〉 ⊗ |untriggered〉 ⊗ |unactivated〉 ⊗ |unbroken〉 ⊗ |live〉 ,
(9.7)
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CN

Figure 9.1: Schrödinger’s “hellish contraption”,
including radioactive atoms, a Geiger counter, a
hammer, a bottle of cyanide, and a cat blissfully
unaware of it all.

represents the atoms, the Geiger counter, the hammer, the container of cyanide, and the cat,
respectively. After a time T equal to an hour, unitary evolution transforms |Ψ(0)〉 into

|Ψ(T )〉 =
1√
2
|undecayed〉 ⊗ |untriggered〉 ⊗ |unactivated〉 ⊗ |unbroken〉 ⊗ |live〉

+
1√
2
|decayed〉 ⊗ |triggered〉 ⊗ |activated〉 ⊗ |broken〉 ⊗ |dead〉 .

(9.8)

Does the collapse postulate apply to |Ψ(T )〉 or doesn’t it? This question has moral conse-
quences (if the cat dies). If |Ψ(T )〉 collapses before we look into the steel chamber, then
whoever set up the “hellish contraption” is the murderer. But if the state remains |Ψ(T )〉 up to
the time we look into the chamber, we are the murderers – the cat was in a superposition until
we looked.

9.2 A Quantum Catalyst

Einstein, Podolsky and Rosen claimed that quantum mechanics is incomplete. Their claim
may be correct – in a way they did not anticipate, as Sect. 3.5 notes. Quantum mechanics is
incomplete because it does not account for the actual results of measurements. As the paradox
of Schrödinger’s cat shows, unitary evolution cannot turn possible results into actual results.
Aware of this paradox, von Neumann postulated collapse. But von Neumann’s collapse is at
best an effective model; it does not resolve the paradox.

Attempts to resolve the paradox fall into three classes, corresponding to three statements:
i) Quantum mechanics is incomplete and there is collapse.
ii) Quantum mechanics is incomplete and there is no collapse.
iii) Quantum mechanics is complete.

Explicit proposals for von Neumann’s collapse are consistent with statement i). A proposal
consistent with statement ii) is Bohm’s theory of hidden variables. (See Sect. 3.5 and Prob. 9.3.)
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In Bohm’s theory there is no need for collapse, because hidden variables account for the results
of all measurements. Section 9.3 presents a surprising proposal consistent with statement
iii), namely the Everett–Wheeler interpretation of quantum mechanics. How can quantum
mechanics be complete, when unitary evolution cannot turn possible results into actual results?
The answer to this question is surprising indeed.

Proposals to resolve the paradox according to statement i) are radical, in that they all
modify quantum mechanics. They all modify unitary time evolution by postulating some form
of collapse. Here we consider three such proposals.

The first proposal is due to Wigner, who noted that we never find ourselves in a superposition
of states. If we look at the pointer on a measuring device, we always find the pointer in a definite
position. But according to Eq. (9.4), a pointer may be in a superposition of two positions.
According to Eq. (9.4), if we look at the pointer after a measurement, we too should evolve
into a superposition of two states, one state for each definite position of the pointer. But we are
not in a superposition! About cats we may have doubts, but not about ourselves. Since Eq. (9.4)
holds for unitary evolution, our evolution cannot be unitary. Wigner [2] suggested that collapse
occurs whenever a conscious human being observes a measuring device in a superposed state.
But this suggestion reduces something that is not well defined (collapse) to something else that
is not well defined (consciousness). The phenomena of science are public while consciousness
is private.

Another proposal, due to Penrose [3], starts with the assumption that there is no way to
quantize gravity without modifying quantum mechanics. Penrose proposed that the superposed
states of any system (not just of measuring devices) collapse under the influence of gravitational
fields. Weak gravitational fields, such as the gravitational field of a molecule, do not interfere
with unitary evolution; but strong gravitational fields modify the evolution by inducing collapse.
The transition from “weak” to “strong” gravity should occur at a scale of about one Planck
mass;1 systems much more massive than the Planck mass would behave classically. So far this
suggestion, too, is not well defined, since quantum gravity is not well defined. Diosi, however,
made a similar and concrete suggestion [4].

The most concrete proposals for collapse are the “Spontaneous Localization” (SL) model
of Ghirardi, Rimini and Weber and the “Continuous Spontaneous Localization” (CSL) model
of Pearle [5]. In both models, extended states of matter spontaneously collapse to localized
states of size a ≈ 10−5 cm. In the SL model, an extended state ψ(x) can spontaneously
localize to ψ(x)g(x − x̄), where g(x − x̄) is a gaussian of width a centered at x = x̄. The
probability of such a localization is proportional to

∫
d3x|ψ(x)g(x − x̄)|2 .

Thus the SL model is consistent with Born’s statistical interpretation of the wave function. But
what happens to quantum interference if ψ(x) spontaneously localizes? The answer of the
SL model is that ψ(x) spontaneously collapses, but each second the probability of a “hit” – a
collapse – is about λ = 10−16, i.e. it happens once in about 300 million years on average. For
all practical purposes, the wave function of a given particle never collapses, and so we see such

1The Planck mass, defined to be
√

�c/G ≈ 2.18×10−5 g (whereG is Newton’s gravitational constant), is about
the mass of a baby tick, and about 1017 times the mass of a heavy atom.
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quantum interference effects as electron diffraction. But a macroscopic object, such as the
pointer on a measuring device, contains many particles. Imagine a pointer in a superposition
of two positions separated by a distance L � a. We might represent the initial state |Ψ(0)〉 as

|Ψ(0)〉 =
1√
2

[|0〉 + |L〉] ,

where |0〉 and |L〉 denote wave functions of the pointer position that are sharply peaked at 0 and
at L, respectively. But the pointer contains some 1022 particles, each with degrees of freedom
of its own. Let i index the particles and let |ψ(i)

0 〉 and |ψ(i)
L 〉 represent the complete wave

function of the i-th particle in the pointer when the pointer position is 0 and L, respectively;
assume |ψ(i)

0 〉 and |ψ(i)
L 〉 do not overlap. Let us take the terms |0〉 and |L〉 to be tensor products

of these one-particle wave functions:2

|Ψ(0)〉 =
1√
2

[⊗
i

|ψ(i)
0 〉 +

⊗
i

|ψ(i)
L 〉

]
(9.9)

The index i runs over N values, with N of order 1022. Suppose that just one of the particles,
say the n-th, spontaneously localizes. That is, its wave function collapses to a new wave
function localized in a region of size a � L. The new wave function for the n-th particle
could overlap with either |ψ(n)

0 〉 or |ψ(n)
L 〉 but not both. Thus either |ψ(n)

0 〉 or |ψ(n)
L 〉 would

vanish – and along with it, the corresponding tensor product term in Eq. (9.9). The rate
for this spontaneous localization would be about 1022 × 10−16 sec−1 = 106 sec−1, so the
pointer would have a definite position after approximately 10−6 seconds; the collapse of any
macroscopic superposition would be extremely rapid.

In the CSL model, the time evolution is continuous rather than sudden. An operator ρ(x, t)
represents the number of particles in a sphere of radius a ≈ 10−5 cm, centered at x at time t.
(The operator ρ(x, t) could represent the mass, rather than the number, of the particles in the
sphere; if so the CSL model, like Diosi’s model, is a concrete form of Penrose’s suggestion.)
The evolution of a state vector depends on ρ(x, t) and also on a classical field w(x, t) with a
measure, i.e. a probability density for each spacetime configuration ofw(x, t). (See Prob. 9.4.)
Since the evolution depends onw(x, t), we let |Ψw(t)〉 rather than |Ψ(t)〉 denote the state vector
for t > 0. The evolution equation for |Ψw(t)〉 (which by definition is a multiparticle wave
function) is

∂

∂t
|Ψw(t)〉 = − i

�
H|Ψw(t)〉 − 1

4a3λ

∫
dx [w(x, t) − 2λρ(x, t)]2 |Ψw(t)〉 , (9.10)

where H is the Hamiltonian for the particle. Equation (9.10) assigns a unique nonunitary
evolution |Ψw(t)〉 to each configuration of w(x, t). (It is nonunitary because the norm of
|Ψw(t)〉 may change.) Now the probability density that the initial state vector actually evolves
according to |Ψw(t)〉 during an interval 0 ≤ t ≤ T is equal to 〈Ψw(T )|Ψw(T )〉 times the
probability density for the configuration of w(x, t).

2There could be entanglement within |0〉 and |L〉, but for simplicity (to keep the sum to two terms) we take the
terms to be tensor products.
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As a simple application of the CSL model, let us take H = 0 and consider a measuring
device with a pointer consisting of a steel needle, 1 cm long, with cross section 2 × 10−3 cm2.
The initial state is |Ψ(0)〉 of Eq. (9.9); as before, |ψ(i)

0 〉 and |ψ(i)
L 〉 represent the complete wave

function of the i-th particle in the pointer when the pointer is displaced a distance 0 and L,
respectively. Without representing the operator ρ(x, t) explicitly, we assume that it acts on
each term in the superposition to yieldN at any point on the pointer and zero elsewhere, where
N is the number of particles in a steel ball of radius a = 10−5 cm. Since the coefficient of the
integral in Eq. (9.10) is negative, the norm of |Ψw(t)〉 tends to decrease over time; it remains
unchanged only if w(x, t) precisely cancels 2λρ(x, t). Thus of all possible configurations of
w(x, t), two classes are important for the evolution of |Ψ(0)〉. One hasw(x, t) on average equal
to 2λN at the position of the undisplaced pointer, and zero elsewhere. The other has w(x, t)
on average equal to 2λN at the position of the pointer displaced by L, and zero elsewhere. In
the first case |Ψ(0)〉 evolves to the state |0〉 =

⊗
i |ψ(i)

0 〉, and in the second case it evolves to

the state |L〉 =
⊗

i |ψ(i)
L 〉; the collapse takes a time T of order 6 × 10−18 sec. (See Prob. 9.4.)

The CSL model is (so far) consistent with experiment. Unlike the SL model, it preserves
the symmetry or antisymmetry of multiparticle states, because the operator ρ(x, t) commutes
with particle exchange. Pearle has proposed relativistic CSL models for free particles [6]. A
defect of these models, so far, is that the random classical field induces production of particles
out of the vacuum.

9.3 Quantum Concatenations

The proposals in the previous section, as well as Bohm’s theory, all assume that quantum me-
chanics is incomplete. In 1957 Everett, a student of Wheeler, challenged this assumption. Ev-
erett interpreted quantum mechanics as a theory without collapse. He called his interpretation
the “relative states” formulation of quantum mechanics; it is also known as the Everett-Wheeler
or Many Worlds interpretation of quantum mechanics [7]. Everett and Wheeler proposed that
quantum mechanics, with unitary time evolution, is a complete theory. In this respect only,
the proposal of Everett and Wheeler is conservative where the proposals of the last section are
radical. Quantum mechanics is complete – if we can believe it!

How do Everett and Wheeler resolve the paradox of Schrödinger’s cat? Recall the chain
of events. First, an atom may or may not decay. All the other events in the chain involve
macroscopic systems: a Geiger counter, a hammer, a container of cyanide, a cat. The state of
the “hellish contraption” after a hour of time evolution is given by Eq. (9.8). Equation (9.8)
does not tell us whether the cat is dead or alive; it merely offers two possible accounts. If an
atom decayed, all the events involving the macroscopic systems occurred: the Geiger counter
clicked and activated the hammer and the hammer broke the bottle of cyanide, killing the cat.
If no atom decayed, none of the other events took place. Each state represents a completely
self-consistent account. According to Everett and Wheeler, both these accounts are real. In a
single world, only one account can be real. But in many worlds, they can both be real. Many
accounts imply many worlds, hence the name “Many Worlds interpretation”.

To formalize this proposal, let us define |si〉 to be a set of normalized states of a system
S and |dj〉 a set of normalized states of a system D. Suppose the combined state of the two
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systems is
∑
ij

cij |si, dj〉 .

In general, the states of S andD are correlated and we cannot define the state ofD alone. The
most we can do is choose a state |sn〉 of the system S and define the relative state ofD (relative
to this state of S) to be

N
∑
j

cnj |dj〉 ,

where N is a constant that normalizes the state. The relative state of the system D is simply
the state ofD if we project the combined state of S andD onto |sn〉 and normalize. Similarly,
we can define the state of S relative to a state of D.

We are interested in measurements, so letD be a measuring device acting on the system S.
Let the states |si〉 be eigenstates of some observable and let the measuring device D measure
that observable. It is convenient to let |di〉 be the state of the measuring device indicating that
the system S is in the state |si〉; that is, at the end of a measurement on S in the state |si〉, D
is in the state |di〉. Let the initial state of the measuring device be |d0〉; the evolution

|si, d0〉 → |si, di〉 ,
for any i, defines the measurement. In general, the initial state of the system S is not one of the
states |si〉 but a superposition

∑
i ci|si〉. If the initial combined state is

∑
i ci|si, d0〉, unitary

time evolution during the measurement takes this initial state to
∑
i

ci|si, d0〉 →
∑
i

ci|si, di〉 .

The final state is a superposition and we cannot define a state for either S or D alone; at most
we can say that if S is in the state |si〉, then D is in the relative state |di〉, and vice versa.

We can generalize this notation and letD(1), D(2), D(3), . . . represent identical measuring
devices (or observers) and S(1), S(2), S(3), . . . represent identical systems on which they may
act. All the measuring devices measure an operator which has normalized eigenstates |s(1)i 〉
on system S(1), normalized eigenstates |s(2)i 〉 on system S(2), and so on. The initial state of

D(1) is |d(1)
0 〉, the initial state of D(2) is |d(2)

0 〉, and so on. For any system S(m) in an initial

state |s(m)
i 〉, and for any measuring device D(n), a measurement corresponds to the evolution

|s(m)
i , d

(n)
0 〉 → |s(m)

i , d
(n)
i 〉 .

Now consider a possible measurement scenario:
i) Two measuring devices, D(1) and D(2), measure the same observable on a system S.

D(1) measures first, then D(2). The evolution can be described by the sequence
∑
i

ci|si, d(1)
0 , d

(2)
0 〉 →

∑
i

ci|si, d(1)
i , d

(2)
0 〉 →

∑
i

ci|si, d(1)
i , d

(2)
i 〉 . (9.11)
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Each value of i in the sums of Eq. (9.11) corresponds to a different state of the system S.
Relative to a state |si〉 of S, the combined state of the measuring devices is |d(1)

i , d
(2)
i 〉, so the

two measuring devices always agree. Any number of measuring devices measuring the same
observable on the system S would always agree, relative to the state |si〉, that S is in the state
|si〉. Relative to the state |si〉, measuring devices agree on an account – for each i! According
to the Many Worlds interpretation, each of these accounts is real.

The Many Worlds interpretation boggles the mind, but could it be right? Does it yield
quantum probabilities? Consider measurements on a systemS in the initial state c1|s1〉+c2|s2〉
with |c1|2 = |c2|2. They yield two different accounts, S in the state |s1〉 and S in the state
|s2〉. If each of these accounts corresponds to one world, then what do the coefficients c1 and
c2 have to do with probabilities? Why are we more likely to find S in one state than in the
other? To answer these questions, we consider two more measurement scenarios:

ii) Let a measuring device D act on identical systems S(1) and S(2), prepared in the same
initial states

∑
i ci|s(1)i 〉 and

∑
j cj |s(2)j 〉, respectively. Extending our notation slightly, we

denote by |dij〉 a state of the measuring device that indicates that the system S(1) is in the state

|s(1)i 〉 and the system S(2) is in the state |s(2)j 〉. The initial state of the measuring device is still
|d0〉. During the measurement the evolution is

∑
ij

cicj |s(1)i , s
(2)
j , d0〉 →

∑
ij

cicj |s(1)i , s
(2)
j , dij〉 .

(iii) Let a measuring device D measure the same observable on many identical systems
S(j), prepared in the same initial state

∑
i ci|s(j)i 〉. During the measurement, the evolution is

∑
ij...

cicj . . . |s(1)i , s
(2)
j , . . . , d0〉 →

∑
ij...

cicj . . . |s(1)i , s
(2)
j , . . . , dij...〉 , (9.12)

where |dij...〉 extends the notation |dij〉 to measurements on an arbitrary number of identical
systems. The right side of Eq. (9.12) is a superposition of terms representing all the systems
S(1), S(2), . . . in definite states with the measuring device indicating those states. Thus each
term corresponds to a definite account of the measurement and each account is incompatible
with all the other accounts.3 Furthermore, each term in the sum in Eq. (9.12) appears with a
coefficient. The term that represents system S(1) in the state |s(1)i 〉, system S(2) in the state

|s(2)j 〉, system S(3) in the state |s(3)k 〉, and so on, appears with coefficient cicjck . . . . The square
of the absolute value of this coefficient is

|cicjck . . . |2 = |ci|2 · |cj |2 · |ck|2 · . . . . (9.13)

In the conventional interpretation of quantum mechanics, Eq. (9.13) represents the probability
that system S(1) is in the state |s(1)i 〉, system S(2) is in the state |s(2)j 〉, system S(3) is in the

state |s(3)k 〉, and so on. What does Eq. (9.13) represent if there is no collapse?

3There could be additional measuring devices besides D in this scenario. However, we have already seen in
scenario i) that all measuring devices agree, relative to states chosen for all the systems. So we can let D stand for all
measuring devices acting on all the systems to measure the same observable.
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Everett interpreted Eq. (9.13) as a measure of the account that has S(1) in the state |s(1)i 〉,
S(2) in the state |s(2)j 〉, S(3) in the state |s(3)k 〉, and so on. That is, the correspondence between
worlds and accounts is not one-to-one but many-to-one. To paraphrase Orwell [8], all accounts
are real, but some are more real than others. The measure is what maps coefficients c1 and c2
in an initial state S = c1|s1〉 + c2|s2〉 to probabilities |c1|2 and |c2|2 of final states |s1〉 and
|s2〉, respectively.

For example, suppose c1 =
√

1/3 and c2 =
√

2/3. The measure implies that for every
world in which a measurement yields the final state |s1〉, there are two worlds in which a
measurement yields the final state |s2〉. Let us choose a world at random. How do we choose
a world at random? We measure the final state. From the result of our measurement, we know
if we are in the world with final state |s1〉 or in one of the two worlds with final state |s2〉.
What is the probability that the final state is |s2〉 in the world we choose? The measure insures
that it is 2/3, the quantum probability of the final state |s2〉. In this example, the probabilities
are rational; but even if they are not rational, the measure maps coefficients ci to probabilities
|ci|2.

The mapping arises as follows. Suppose that the probabilities of events E1, E2, E3, . . .
are p1, p2, p3, . . . respectively. Then the probability of a sequence of uncorrelated events
Ei, Ej , Ek, . . . is pi · pj · pk · . . . . The converse is also true: if the probability of a se-
quence of uncorrelated events Ei, Ej , Ek, . . . is pi · pj · pk · . . . , then the probabilities of
events E1, E2, E3, . . . are p1, p2, p3, . . . respectively. In scenario (iii) the sequence of events
i, j, k, . . . (i.e. the sequence of measurements leaving S(1) in the state |s(1)i 〉, S(2) in the state

|s(2)j 〉, S(3) in the state |s(3)k 〉, etc.) has measure |ci|2 · |cj |2 · |ck|2 · . . . . If we choose a world at
random (by making these measurements), the probability of this sequence equals its measure,
|ci|2 · |cj |2 · |ck|2 · . . . . Therefore, the probability that a measurement on a system S(m) will

yield |s(m)
i 〉 in that world is |ci|2, just as quantum mechanics predicts.

Thus in the Many Worlds interpretation, quantum mechanics – with unitary time evolution
– is a complete theory. Quantum mechanics is causal and deterministic, yet it implies the same
experimental predictions as other interpretations of quantum mechanics. Only experimental
predictions about collapse itself would not be the same. If there could be an experiment to
test for collapse, the experiment would test the Many Worlds interpretation. It would also test
Bohm’s theory of hidden variables, in which there is no collapse. (See Sect. 3.4.) But it would
not distinguish between the Many Worlds interpretation and Bohm’s theory.

9.4 A Quantum Catalog

This chapter opens with a paradox involving a quantum cat, Schrödinger’s cat. The resolution
of this paradox seems to involve more quantum cats. According to Wigner, consciousness
resolves the paradox, so his resolution is a “quantum catharsis”. Penrose’s resolution is a
“quantum catapult” – he throws a large mass at the paradox. The CSL model contains a
“quantum catalyst” – a random field that induces collapse but does not itself change. Bohm’s
theory contains “quantum catacombs”, hidden connections across space and time. And in the
Many Worlds interpretation, “quantum concatenations” – unending chains of measurements –
define the worlds.
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All these cats are alive insofar as nothing in experiment or theory kills them; we have not
proved or disproved any of these resolutions.4 Hence the resolution of the paradox remains
a matter of taste. The CSL model is testable, but so far there is no evidence for collapse. To
falsify collapse, on the other hand, we must verify that no superposition ever collapses. For
example, we must show that Schrödinger’s cat remains in an entangled state – and in practice,
we have no hope of showing that the state remains entangled. The entangled state is a sum of
two terms, corresponding to the live and dead cat. In Eq. (9.8), each term appears as a tensor
product of five states. But actually each is a tensor product of countless states representing
every observable inside the steel chamber, such as the position of every atom on the tip of the
cat’s tail. If we lose track of some observables – e.g. if even a few molecules of gas leak out
of the steel chamber – we have lost track of the relative phase between terms, and we cannot
verify the entangled state of Schrödinger’s cat. (See Prob. 9.7.)

Hence in practice, we cannot verify the entangled state of Schrödinger’s cat. Can we verify
the state in principle? If so, in what sense? In principle, any quantum operator is measurable.
Suppose we measure an operator O having two eigenstates: one is Eq. (9.8) and the other is

1√
2
|undecayed〉 ⊗ |untriggered〉 ⊗ |unactivated〉 ⊗ |unbroken〉 ⊗ |live〉

− 1√
2
|decayed〉 ⊗ |triggered〉 ⊗ |activated〉 ⊗ |broken〉 ⊗ |dead〉 .

We prepare the entangled state Eq. (9.8). If repeated measurements ofO always yield Eq. (9.8),
there is no collapse. So we can in principle verify the entangled state Eq. (9.8). However, we
can then in principle play the following trick. After verifying the entangled state, we check
whether the cat is alive or dead. If we find it dead, i.e. in the state

|decayed〉 ⊗ |triggered〉 ⊗ |activated〉 ⊗ |broken〉 ⊗ |dead〉 ,

we again measure the operator O. A measurement of O leaves the cat in an eigenstate of O.
The eigenstates ofO are not orthogonal to the state in which the cat is alive, Eq. (9.7); so if we
now check again whether the cat is alive or dead, we may find the cat alive. Hence if we can
measure O, we can revive a dead cat.

That is, we can in principle verify an entangled state in the same sense that we can in
principle reverse an irreversible process. Bohr took measurement to be an irreversible process
[9]. For example, if a radium nucleus decays and marks a blank photographic film, that is an
irreversible process. Suppose a blank film evolves by unitary evolution into a superposition of
a blank film and a marked film. Can we verify the superposition? If so, then we can also turn
marked film into blank film. Since we cannot in practice reverse this measurement, we cannot
in practice verify the superposition. This statement holds not only for Schrödinger’s cat and
for photographic film, it holds for any measurement. If we cannot monitor the quantum phases
of a superposition of states of a measuring device, the measuring device is in practice classical,
as Bohr insisted, and the measurement is irreversible.

Today we can show, more explicitly than Bohr, why measurements are irreversible. Mea-
surements are irreversible because they involve pointers and other macroscopic objects that

4Even direct measurements of the quantum wave (described in Chap. 15) would not prove or disprove any of these
resolutions.
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interact with the environment. Consider an entangled state of a measuring device and a mea-
sured system. The measuring device interacts with the environment and the relative phases of
the entangled state come to depend on the environment. We can minimize this interaction, but
we cannot eliminate it; consequently we lose track of the relative phases and cannot verify the
entangled state. This form of irreversibility is called decoherence. In practice, decoherence
happens so quickly that we cannot verify an entangled state of a measuring device and a mea-
sured system [10]. For all practical purposes, decoherence makes entanglement of a measuring
device and a measured system unobservable; but decoherence cannot select the actual result
of a measurement from the possible results.

If the paradox of Schrödinger’s cat never arises in practice, why modify quantum mechan-
ics? Perhaps some other theory accounts for the results of measurements. Perhaps boundary
conditions account for them. The Many Worlds interpretation assumes initial boundary con-
ditions on the universe (the initial state) but not final boundary conditions. In Sects. 10.5 and
18.3 we consider final boundary conditions as well. Can they account for the actual results of
measurements?

Problems

9.1 (a) Show that the time evolution operator U(T, 0) defined in Eq. (9.5),

U(T, 0) = e−iπσzσ
d
y/4 ,

acts on spin states as follows:

U(T, 0)| ↑, 0〉 = | ↑, ↓〉
U(T, 0)| ↓, 0〉 = | ↓, ↑〉 .

(The initial state |0〉d of the “measuring device” is (| ↑〉d + | ↓〉d)/
√

2.) Thus

U(T, 0)
| ↑, 0〉 + | ↓, 0〉√

2
=

| ↑, ↓〉 + | ↓, ↑〉√
2

.

(b) Consider an ensemble of spin pairs in the state (| ↑, ↓〉+ | ↓, ↑〉)/√2. Show that this
ensemble is not equivalent to an ensemble that is a mixture of an equal number of pairs
in the states | ↑, ↓〉 and | ↓, ↑〉. What would be the result of measuring the total spin of
each pair in the two ensembles?

∗9.2 In a Mach-Zehnder interferometer, an incident wave packet separates into two wave
packets, which take different paths before interfering:

ψ(x, t) =
1√
2
[ψT (x, t) + ψR(x, t)] .

(See Fig. 9.2.) Since the evolution ofψ(x, t) is unitary, we can write |ψ(t)〉 = U(t)|ψ(0)〉
and also |ψT (t)〉 = U(t)|ψT (0)〉, |ψR(t)〉 = U(t)|ψR(0)〉 where U(t) is a unitary
operator. Since U(t) is unitary, the scalar product 〈ψT (t)|ψR(t)〉 must be constant. Yet
since the two wave packets ψT (x, t) and ψR(x, t) separate, their overlap – and thus their
scalar product 〈ψT (t)|ψR(t)〉 – must decrease at some time. Resolve this paradox!
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Figure 9.2: The wave packet |ψ〉 = (|ψT 〉+|ψL〉)/√2 is a
superposition of |ψT 〉, transmitted through the first mirror,
and |ψL〉, reflected at the first mirror.

9.3 Suppose we interpret the wave function ψ(x, t) of a particle as follows: with probability
density ρ = |ψ(x, t)|2 the particle is at x at time t and its velocity is

v(t) =
�

m
∇ [� lnψ(x, t)] ,

where � indicates the imaginary part. Show that if ψ(x, t) satisfies the Schrödinger
equation

i�
∂

∂t
ψ(x, t) =

[
− �

2

2m
∇2 + V (x)

]
ψ(x, t) ,

then the probability density ρ and the probability current J = ρv satisfy the continuity
equation

∇ · J +
∂ρ

∂t
= 0 .

∗9.4 Apply the CSL model to the initial state Eq. (9.9). Define a state |Ψw(t)〉 with boundary
condition |Ψw(0)〉 = |Ψ(0)〉.
(a) Suppose the random fieldw(x, t) equals 2λN (constant in time) over the undisplaced
pointer position, and zero elsewhere. In the approximation H = 0, show that Eq. (9.10)
implies

|Ψw(t)〉 =
1√
2

[⊗
i

|ψ(i)
0 〉 + e−tλN2V/a3 ⊗

i

|ψ(i)
L 〉

]
, (9.14)

where V is the volume of the pointer. The approximation H = 0 is natural when the
integral term in Eq. (9.10) dominates the evolution of |Ψw(t)〉.
(b) Show that for iron (density 7.86 g/cm3, predominant isotope 26Fe56) the number
of particles (protons, neutrons and electrons) in a ball of radius a = 10−5 cm is ap-
proximately N = 2.9 × 1010 particles. Thus, relative to the configuration w(x, t), the
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probability of finding the pointer displaced by L becomes exponentially small in a time
of order T ≈ a3/λN2V ≈ 6 × 10−18 sec.
(c) Now suppose thatw(x, t) equalsw0(t) all over the volume of the undisplaced pointer,
and equals wL(t) all over the volume of the displaced pointer. Define times tn = nT/N
for n = 1, . . . , N with N arbitrarily large. For each time interval tn−1 ≤ t < tn, define
w0(t) = w0(tn) and wL(t) = wL(tn). The relevant measure of w(x, t) (up to overall
normalization) is the product

N∏
n=1

[dw0(tn)dwL(tn)] .

Compute the probability 〈Ψw(T )|Ψw(T )〉 and show that there are only two kinds of
configurations w(t) for which the probability is not exponentially suppressed: w0(tn) ≈
2λN , wL(tn) ≈ 0 and w0(tn) ≈ 0, wL(tn) ≈ 2λN , for all n. Thus superpositions are
suppressed.

∗9.5 In the “Many Worlds” interpretation of quantum theory, consider measurements of a
nondegenerate operatorA, with eigenstates |a1〉, . . . , |an〉, on an ensemble ofN systems
prepared in the identical state

∑
i ci|ai〉. These measurements yield nN incompatible

accounts, each corresponding to a “world” with a certain measure. Within any world,
let Ni denote the number of systems left in the state |ai〉 by the measurement of A;
by definition

∑
iNi = N . Consider the combined measure of all the worlds in which

Ni/N = |ci|2 to order 1/
√
N , for all i, and show that in the limitN → ∞, their combined

measure approaches 1.

∗9.6 Consider an ensemble of identical systems in which the probability that a system is in
the state |ψi〉 is pi. We represent this ensemble by a density matrix ρ:

ρ =
∑
i

pi|ψi〉〈ψi| .

(The states |ψi〉 need not be orthogonal.) Prove the following:
(a) On the ensemble, the expectation value of any operatorO is the trace of ρO, tr(ρO) =∑
i pi〈ψi|O|ψi〉.

(b) For every ρ, tr ρ = 1; but tr (ρ2) = 1 only if ρ = |ψi〉〈ψi| for some i.
(c) Suppose we measure O on one system in the ensemble. By the definition of an
ensemble, the density matrix of the other systems in the ensemble should remain ρ.
Show that if tr (ρ2) = 1 then the density matrix remains ρ, whether the number N of
systems in the ensemble is finite or infinite. Show that the same is true if ρ represents
Alice’s systems when she and Bob share pairs of systems in an entangled state. (See
Sect. 3.4.) Show that if ρ is a mixture of N1 systems in the state |ψ1〉, N2 systems in
the state |ψ2〉, and so on, with Ni/N = pi for all i, then a measurement on one system
changes the density matrix of the other systems unless N is infinite [11].

9.7 Consider an N -particle system in a “Schrödinger Cat” state |ΨSCAT 〉:

|ΨSCAT 〉 =
1√
2

{|ψL1 , ψL2 , . . . , ψLN 〉 + |ψD1 , ψD2 , . . . , ψDN 〉} ,
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where |ψL1 , . . . , ψLN 〉 represents the “live cat” and its environment and |ψD1 , . . . , ψDN 〉
represents the “dead cat” and its environment. The state |ΨSCAT 〉 is normalized, but
we do not assume 〈ψLi |ψDi 〉 = 0 for each i. A planned experiment to verify the relative
phase in |ΨSCAT 〉 (i.e. to distinguish |ΨSCAT 〉 from the orthogonal state) goes awry
when theN -th system escapes unmeasured from the laboratory. Show that the probability
that measurements on the other N − 1 states yield the correct relative phase is at most[
1 + |〈ψLN |ψDN 〉] /2.

∗9.8 As an example of decoherence, consider a current of electrons passing through a quantum
point contact [12] and interacting with a two-level system in the initial state (|0〉+|1〉)/√2.
(A quantum point contact reflects a fraction of incident electrons just as a partially silvered
mirror reflects a fraction of incident photons.) In the initial state of the electrons,

√
R|R〉+√

T |T 〉, the probability of reflection at the quantum point contact isR and the probability
of transmission is T . The interaction of each electron with the two-level system is

(|0〉+|1〉)√
2

⊗(
√
R|R〉+

√
T |T 〉) →

√
R

2
(|0, R〉+|1, R〉)+

√
T

2
(|0, T 〉+eiφ|1, T 〉) ,

each transmitted electron inducing a relative phase φ between |0〉 and |1〉.
(a) Show that the uncertainty in the relative phase between the states |0〉 and |1〉 after N
electrons arrive at the quantum point contact is roughly 2

√
NT (1 − T )φ.

(b) If total dephasing occurs when the uncertainty in the relative phase is π, show that the
dephasing time t, i.e. the time required for total dephasing, is t = eπ2/4IT (1 − T )φ2,
where I is the incident current.
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10 A Quantum Arrow of Time?

An arrow of time flies through our experience. We remember the past but not the future. We
see balloons deflate – but never inflate – spontaneously; we scramble eggs and we cannot
unscramble scrambled eggs. Many physical processes are not reversible. But almost all ele-
mentary physical processes are reversible. Certain exotic processes1 involving the weak force
are not [1], but there is no known connection between the irreversibility of these microscopic
processes and the macroscopic irreversibility of our experience. So why is there an arrow of
time?

One explanation of macroscopic irreversibility follows from a common formulation of the
second law of thermodynamics: the entropy of a closed system never decreases over time
– disorder never decreases. (See Sect. 1.3.) A macroscopic process that increases entropy
is practically irreversible, and so irreversible macroscopic processes emerge from reversible
microscopic processes. However, this explanation does not satisfy us completely. At the very
least, it doesn’t account for the order we find in the world. Without order, entropy could not
increase, and there would be no irreversible processes.

We can explain the order by assuming an ordered initial state of the universe. But why
assume an initial state? Why not assume a final state? By imposing an initial but not a final
boundary condition, we have already sent the arrow of time flying. Suppose, instead, that we
impose an intermediate condition: physical laws are time symmetric, and we specify the state
of the universe at an intermediate time. If there is any uncertainty in the evolution of the state
– due either to indeterminism in physical laws or to an incomplete specification of the state
– there is no arrow of time. Whether we run time forwards or backwards, entropy ultimately
increases. This argument (like the helium/neon paradox in Sect. 1.3) indicates that entropy
does not define the arrow of time – it follows the arrow of time.

Irreversibility is at the heart of the paradox of Schrödinger’s cat. (See Sect. 9.4.) Does
entropy account for this irreversibility? What, indeed, is irreversible in a quantum measure-
ment? Collapse is irreversible. Consider a quantum system S with orthonormal states |si〉 and
a measuring device D in the initial state |d0〉. As in Sect. 9.3, we let |di〉 represent the state of
the measuring device when it indicates that S is in the state |si〉. The evolution

|si, d0〉 → |si, di〉 ,
for any i, defines the measurement. Now, if S is initially in a superposition

∑
i ci|si〉, unitary

evolution takes S and D to an entangled state:∑
i

ci|si, d0〉 →
∑
i

ci|si, di〉 . (10.1)

1See Prob. 8.2.
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If the entangled state collapses, then the complete evolution is not Eq. (10.1) but

∑
i

ci|si, d0〉 →
∑
i

ci|si, di〉 → |sj , dj〉 , (10.2)

for some j with cj = 0. The system and measuring device evolve to the state |sj , dj〉. Suppose
now thatS is initially in a different state

∑
i c

′
i|si〉, with c′j = 0. Assuming collapse, the system

and measuring device could evolve to the same final state |sj , dj〉:
∑
i

c′i|si, d0〉 →
∑
i

c′i|si, di〉 → |sj , dj〉 .

Since collapse can take two different initial states to the same final state, collapse is irreversible.
If collapse is irreversible, what is the relation of collapse to thermodynamic irreversibil-

ity? Does Eq. (10.2) entail an increase in entropy? If there is no increase in entropy, does
quantum mechanics contain its own arrow of time? One way to approach these questions is to
consider possible boundary conditions on quantum processes. We have so far imposed only
an initial boundary condition on the measurement process. Why not impose a final boundary
condition as well? This proposal may sound strange, but in practice, experiments often involve
successive measurements of noncommuting observables. For example, if we measure the spin
component of an atom successively along three distinct axes, the intermediate spin measure-
ment is sandwiched between initial and final boundary conditions. Here classical and quantum
mechanics differ fundamentally. The initial state of a classical system determines its final state
(via its equations of motion). But in quantum mechanics, the initial state of a system does not
determine its final state, and we can impose almost any combination of initial and final bound-
ary conditions. So before concluding that quantum mechanics contains an arrow of time, let’s
check whether our boundary conditions contain an arrow of time – whether initial boundary
conditions without final boundary conditions make reversible processes look irreversible.

10.1 A Quantum Card Trick

In a typical (classical) card trick, a magician offers a deck of cards to a volunteer. The volunteer
picks a card at random, looks at it, and returns it at random to the deck, without showing it to
the magician. Then the magician (call her Madge) identifies the card. How does she do it?
She may, for example, prepare the cards in a certain order, and then identify the volunteer’s
card as the one that is out of order. Thus the protocol of the card trick is as follows: First,
Madge prepares a state (the deck of cards). Second, the volunteer performs a measurement
(picks a card, looks at it and returns it) without informing Madge of the result. Finally, Madge
performs her own measurement (she gets back the deck and looks at it) and infers the result of
the volunteer’s measurement.

And now for a quantum card trick. A volunteer, please?
The protocol of the quantum card trick [2] is as follows: First, Madge prepares a state of a

spin-1/2 particle. Next, you (the volunteer) perform a measurement on the particle. You may
measure the spin component of the particle along the x-axis, the y-axis, or the z-axis – you
choose which axis. You don’t tell Madge which axis you chose, and you don’t tell her the



10.2 Time Reversal 139

result of your measurement. Finally, Madge performs a measurement of her own, and hands
you a little list announcing the result of your measurement. Actually, the list announces three
results, one for each allowed measurement. For example, Madge may hand you the following
list:

If you measured σx, the result was 1.
If you measured σy , the result was −1.
If you measured σz , the result was −1.

� Have a nice day. �
You may not believe it, but Madge is always right. Her list always includes the result of your
measurement. How does she do it?

According to the principle of complementarity, measurements ofσx, σy andσz on a particle
at a given time are mutually exclusive. If Madge prepared the particle in an eigenstate of σx,
she could predict your result if you chose to measure σx. Moreover, don’t forget that Madge
makes a final measurement, after yours. Suppose she measures σy . Then if you chose to
measure σx, she could identify your result from the state she prepared; if you chose to measure
σy , she could identify your result from her final measurement. But how could she identify
your result if you chose to measure σz?

We leave this question as Prob. 10.1, with a hint: Madge could have an extra particle up
her sleeve. No, she is not allowed to swap the particles; it is not an identical particle. But the
initial state she prepares could be an entangled state of two particles.

10.2 Time Reversal

What is time reversal in quantum mechanics? Let’s try to answer the question via an analogy
with classical mechanics. Suppose x(t) represents the motion of a free classical particle, with
x(t) the particle position at time t. The time reverse of the motion is Tx(t) = x(−t). The
sequence of events is reversed in Tx(t): if in x(t) the particle moves from x(ta) to x(tb) in
time tb − ta, in Tx(t) the particle moves from x(tb) to x(ta) in the same time.

By analogy, the time reverse of an evolving quantum state ψ(x, t) should be ψ(x,−t).
But a simple example shows that this analogy cannot be correct: it would imply that the time
reverse of a free particle in a momentum eigenstate,

ψ(x, t) = eip·x/�−ip2t/2m/� ,

is

ψ(x,−t) = eip·x/�+ip2t/2m/� ;

but both ψ(x, t) and ψ(x,−t) represent a particle with momentum p, whereas time reversal
should reverse the momentum. Furthermore, ψ(x, t) is a solution to the Schrödinger equation
for a free particle,

i�
∂

∂t
ψ(x, t) =

p2

2m
ψ(x, t) = − �

2

2m
∇2ψ(x, t) ,

but ψ(x,−t) is not, and both ψ(x, t) and Tψ(x, t) should be solutions to the Schrödinger
equation for a free particle, just as both x(t) and Tx(t) could be motions of a free classical
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particle. The analogy fails because the classical and quantum descriptions of a free particle
are so different. All that x(t0) tells us is the position of the particle at time t0; the momentum
depends on dx(t)/dt evaluated at t = t0. By contrast, ψ(x, t0) yields both the position and
momentum distributions of a particle at a time t0.

The position distribution depends on ψ(x, t0) through the norm squared, and |ψ(x, t0)|2
resembles x(t0) in giving information only about the position distribution. For |Tψ(x, t)|2
to represent the time reverse of |ψ(x, t)|2, it must equal |ψ(x,−t)|2. Hence Tψ(x, t) and
ψ(x,−t) can differ only in phase, for every (x, t). What is the phase? Let us write ψ(x, t) as
a Fourier transform:

ψ(x, t) =
1

(2π)3/2

∫ ∞

−∞
d3p ψ̃(p, t)eip·x/� . (10.3)

Taking the complex conjugate of Eq. (10.3), we see that the distribution of p in ψ(x, t) is
identical to the distribution of −p in ψ∗(x, t); that is, taking the complex conjugate of ψ(x, t)
reverses the direction of momentum, but leaves position unchanged. Thus, we may define the
time reversal operator T by

Tψ(x, t) = ψ∗(x,−t) . (10.4)

While this operator T acts appropriately on x and p, we have not yet proved that T is the
correct time reversal operator. (See Prob. 10.2.) However, we obtain the same time reversal
operator T from the Schrödinger equation. Consider the Schrödinger equation for a single
charged particle:

i�
∂

∂t
ψ(x, t) = H(t)ψ(x, t) , (10.5)

where the Hamiltonian H(t) depends explicitly on time:

H(t) =
1

2m
[−i�∇ − eA(x, t)]2 + V (x, t) .

Here A(x, t) is the electromagnetic vector potential and V (x, t) includes the electric scalar
potential. The state ψ(x, t) obeys Eq. (10.5) and evolves forward in time. Now assume that
the state Tψ(x, t), too, evolves forward in time, but represents the reverse sequence of events.
Then Tψ(x, t) must obey the Schrödinger equation, Eq. (10.5), with HT (t), the time reverse
of H(t), in the place of H(t). What is HT (t)? The time reverse of H(t) must contain −t
wherever H(t) contains t. In addition, it must contain −A instead of A, because the vector
potential A is a pseudovector. The sign of V , however, is unchanged under time reversal.2 We
obtain

HT (t) =
1

2m
[−i�∇ + eA(x,−t)]2 + V (x,−t)

2The transformation of A and V follows from the transformation of E and B, since E = ∂A/∂t − ∇V and
B = ∇ × A. Electric fields are produced by charges and thus remain the same under time reversal. Magnetic fields
are produced by currents; since currents change sign under time reversal, so do magnetic fields. Thus E is a true
vector while B is a pseudovector, i.e. B changes sign under time reversal.
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and

i�
∂

∂t
Tψ(x, t) = HT (t)Tψ(x, t) . (10.6)

If we now replace t by −t everywhere in the original Schrödinger equation, Eq. (10.5), and
also take the complex conjugate of both sides, we find

i�
∂

∂t
ψ∗(x,−t) =

1
2m

[i�∇ − eA(x,−t)]2 ψ∗(x,−t) + V (x,−t)ψ∗(x,−t)
= HT (t)ψ∗(x,−t) . (10.7)

Comparing Eqs. (10.6–7), we find Tψ(x, t) = ψ∗(x,−t), as above in Eq. (10.4).
Wigner, who first derivedT , proved thatT is an antilinear operator [3]. That is, ifψ(x, t) =

α1ψ1(x, t) + α2ψ2(x, t), then

T [α1ψ1(x, t) + α2ψ2(x, t)] = Tψ(x, t)
= ψ∗(x,−t)
= α∗

1ψ
∗
1(x,−t) + α∗

2ψ
∗
2(x,−t)

= α∗
1Tψ1(x, t) + α∗

2Tψ2(x, t) .

But the proof that T is antilinear does not require assuming Tψ(x, t) = ψ∗(x,−t). (See
Prob. 10.4.) The definition of T in Eq. (10.4) is not always correct. Note that we can multiply
T by an arbitrary phase factor to get an equivalent time reversal operator. In Eq. (10.4) we
have set this phase factor to 1. However, we cannot always do so when T acts on states with
spin. (See Sect. 11.2.)

10.3 The Aharonov–Bergmann–Lebowitz Formula

We know how to compute the probability of an outcome, given an initial boundary condition.
Let the initial state at time ta be |a〉; letU(t, ta) be the operator that evolves the state |a〉 forward
in time from ta to t. If at time t we measure a nondegenerate operator C having eigenvalues
and eigenvectors cj and |cj〉, respectively, then P(cj/a), the conditional probability of the
result cj , is |〈cj |U(t, ta)|a〉|2. However, our discussion of collapse and reversibility suggests
that we need a formula for computing the probability of an outcome, given both initial and
final boundary conditions. So does the quantum card trick.

Aharonov, Bergmann and Lebowitz derived such a formula [4]:

P(cj/a, b) =
|〈b|U(tb, t)|cj〉〈cj |U(t, ta)|a〉|2∑
i |〈b|U(tb, t)|ci〉〈ci|U(t, ta)|a〉|2 . (10.8)

Here |b〉 is the final boundary condition at time tb; U(tb, t) is the operator that evolves a
state from t to time tb; and P(cj/a, b) is the probability that a measurement of C at time t
yields cj , given the boundary conditions |a〉 at time ta and |b〉 at time tb. The numerator of the
Aharonov–Bergmann–Lebowitz (ABL) formula is the product of two conditional probabilities,
the probability P(cj/a) that a measurement ofC at time t yields cj , given that the state at time
ta is |a〉, and the probability P(b/cj) that the state at time tb is |b〉, given that a measurement
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of C at time t yields cj . To normalize the numerator, we divide it by the total probability∑
j P(b, cj)P(cj , a) that the state at time tb is |b〉, given that the state at time ta is |a〉, and

assuming a measurement ofC at time t. This total probability is the denominator of Eq. (10.8).
The ABL formula allows us to compute the probabilities of results of any measurement between
initial and final boundary conditions. For example, if |a〉 is an eigenstate of σx with eigenvalue
1, and |b〉 is an eigenstate of σy with eigenvalue −1, Eq. (10.8) shows that a measurement of
σx at time t must yield 1, and a measurement of σy at time t must yield −1. A measurement
of σz at time t is equally likely to yield 1 and −1.

Is the ABL formula invariant under time reversal? To answer this question, let us start with
a Hamiltonian that is invariant under time reversal:

H = p2/2m+ V (x) .

The amplitude for a state |a〉 to evolve to a state |b〉 in a time tb − ta is equal to

〈b|U(tb − ta)|a〉 ,
while the amplitude for the time-reversed process – for the state |b〉∗ to evolve to the state |a〉∗

in a time tb − ta, with the same Hamiltonian – equals

(〈a|∗)U(tb − ta)(|b〉∗) = (〈a|U∗(tb − ta)|b〉)∗

= (〈a|U∗(tb − ta)|b〉)†

= 〈b|U∗(ta − tb)|a〉 .
Now U(tb − ta) = e−iH(tb−ta)/�, so U∗(ta − tb) = eiH

∗(ta−tb)/� = U(tb − ta) since H is
real. Hence the amplitudes are the same. In general, the ABL formula is invariant under time
reversal if the relevant Hamiltonian is. (See Prob. 10.5.)

The ABL formula does not look time reversal invariant, only because the evolution operators
U(tb, t) and U(t, ta) indicate the arrow of time. However, we can rewrite Eq. (10.8) to make
it look time reversal invariant. From Eq. (5.14), we have

U†(tj , ti) = U(ti, tj) ,

Then Eq. (10.8) becomes

P(cj) =
|〈b|U†(t, tb)|cj〉〈cj |U(t, ta)|a〉|2∑
i |〈b|U†(t, tb)|ci〉〈ci|U(t, ta)|a〉|2 . (10.9)

Since 〈b|U†(t, tb) = [U(t, tb)|b〉]† we can regard U†(t, tb) in Eq. (10.10) as evolving 〈b|
backwards in time from tb to t. Then the time evolution operators in Eq. (10.10) evolve the
final state 〈b| backward and the initial state |a〉 forward to the same intermediate time t, and
no explicit arrow of time appears in Eq. (10.10). Actually, Eq. (10.8) can always be rewritten
as Eq. (10.10), whether or not the relevant Hamiltonian is invariant under time reversal. What
makes the ABL formula time reversal invariant (or not) is the Hamiltonian, and not the form of
Eq. (10.8) or Eq. (10.10). However, Eq. (10.10) is convenient for problems with given initial
and final boundary conditions, for it is simpler to evolve a final state 〈b| backwards in time
than to evolve several intermediate states |ci〉 forwards in time.
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Equation (10.8) and Eq. (10.10) assume one intermediate measurement, but there may
be many such measurements. Let us consider a series of n intermediate measurements,
at times t1, t2, . . . , tn, of nondegenerate operators C(1), C(2), . . . , C(n), with eigenvalues
c
(1)
i1
, c

(2)
i2
, , . . . , c

(n)
in

respectively. (For degenerate operators, see Prob. 10.6.) We obtain

the conditional probability P(c(1)j1 , c
(2)
j2
, . . . , c

(n)
jn
/a, b) to find the values c(1)j1 , c

(2)
j2
, . . . , c

(n)
jn

,
respectively, for these operators:

P(c(1)j1 , c
(2)
j2
, . . . , c

(n)
jn
/a, b) (10.10)

=
|〈b|U(tb, tn)|c(n)

jn
〉 . . . 〈c(2)j2 |U(t2, t1)|c(1)j1 〉〈c(1)j1 |U(t1, ta)|a〉|2∑

i1,i2,...,in
|〈b|U(tb, tn)|c(n)

in
〉 . . . 〈c(2)i2 |U(t2, t1)|c(1)i1 〉〈c(1)i1 |U(t1, ta)|a〉|2

.

This expression is invariant under time reversal if the relevant Hamiltonian is. What about col-
lapse in the ABL formula? Collapse appears explicitly in Eq. (10.11) at arbitrarily many times
t1, t2, . . . , tn, since Eq. (10.11) is the conditional probability – not the probability amplitude
– of the intermediate results c(1)j1 , c

(2)
j2
, . . . , c

(n)
jn

. Hence, given both initial and final boundary
conditions, collapse does not imply irreversibility; there is no “quantum arrow of time”.

10.4 The Arrow of Time Revisited

The ABL formula, Eq. (10.8), assumes a final boundary condition, but how do we impose
final boundary conditions? Final boundary conditions are no different from initial boundary
conditions. We impose either initial or final boundary conditions by selecting for them. For
example, to prepare an ensemble of particles with the initial boundary condition Sx = �/2, we
take a larger ensemble of the particles, measureSx on each, and select particles withSx = �/2.
If initial conditions alone define the ensemble, it is a preselected ensemble. To impose the final
boundary condition Sy = −�/2, we measure Sy on each particle – at the end of the experiment
– and select only those with Sy = −�/2. Together, initial and final conditions define a pre-
and postselected ensemble. Pre- and postselected (PPS) ensembles often turn up in sequences
of laboratory measurements.

The ABL formula applied to pre- and postselected ensembles (with Hamiltonians that are
invariant under time reversal) provides a formulation of quantum mechanics that has no “arrow
of time”: all quantum processes are reversible. Is this formulation of quantum mechanics
equivalent to the conventional formulation of quantum mechanics? We can (and did) derive
this formulation from the conventional formulation; can we derive the conventional formulation
from it? That is, can we derive the probability of a result, given initial boundary conditions alone
(as in the conventional formulation)? At first it seems we cannot, because (by construction)
the ABL formula yields the probability of a result given initial and final boundary conditions.
However, we will now discover how to compute both kinds of probability.

To simplify, we drop all the time evolution operators in Eq. (10.11), i.e. we set them all to 1.
(There is no loss of generality in doing so, since we can absorb them into the definitions of the
states |a〉, |c(1)j1 〉, . . . , |b〉.) Now letC andC ′ be two noncommuting observables, and suppose
a measurement of C yields the result cj . What is the probability a measurement of C ′ will
now yield the result c′k? According to the conventional formulation of quantum mechanics, the
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probability is P(c′k/cj) = |〈c′k|cj〉|2. To obtain P(c′k/cj) = |〈c′k|cj〉|2 from the ABL formula,
we assume that C and C ′ are two successive intermediate measurements in Eq. (10.11), i.e.
c′k and cj correspond to c(m)

k and c(m−1)
j for some m. We begin by applying Eq. (10.11) to

calculate P(c′k/a, cj , b). Here P(c′k/a, cj , b) is the probability that a measurement ofC ′ yields
c′k, given that the initial state is |a〉, the final state is |b〉, and that a measurement of C just prior
to the measurement of C ′ yields cj . (The intermediate measurements C(1), . . . , C(m−2) and
C(m+2), . . . , C(n) are also given, although they are not explicit in the notation P(c′k/a, cj , b).)
We apply Eq. (10.11) as follows: In the denominator, we sum over intermediate measurements
of all operators except C alone. In the numerator, we sum over intermediate measurements
of all operators except C and C ′. We find that Eq. (10.11) no longer depends on any of the
measurements that preceded C. We have

P(c′k/a, cj , b) =

∑
jm+1,jm+2,...,jn

|〈b|c(n)
jn

〉 . . . 〈c(m+1)
jm+1

|c′k〉〈c′k|cj〉|2∑
im,im+1,...,in

|〈b|c(n)
in

〉 . . . 〈c(m)
im

|cj〉|2

= |〈c′k|cj〉|2
∑
jm+1,jm+2,...,jn

|〈b|c(n)
jn

〉 . . . 〈c(m+1)
jm+1

|c′k〉|2∑
im,im+1,...,in

|〈b|c(n)
in

〉 . . . 〈c(m)
im

|cj〉|2
. (10.11)

P(c′k/a, cj , b) does not depend on any measurements prior to the measurement of C, but still
depends on the measurements that follow C ′. We might guess, however, that if the subsequent
observables are sufficiently different from one another, they will tend to screen the influence
of the final boundary condition; then the ratio of sums will not depend on the following
measurements, and P(c′k/a, cj , b) will reduce to |〈c′k|cj〉|2, as in the conventional formulation.

Actually, our guess turns out to be correct, if we choose at least two of the observables
correctly. Consider a sum that is part of both the numerator and the denominator of Eq. (10.12):

∑
jn−1,jn

|c(n−1)
jn−1

〉〈c(n−1)
jn−1

|c(n)
jn

〉〈c(n)
jn

|b〉〈b|c(n)
jn

〉〈c(n)
jn

|c(n−1)
jn−1

〉〈c(n−1)
jn−1

| . (10.12)

If the states |c(n−1)
jn−1

〉 and |c(n)
jn

〉 satisfy the condition that for all jn−1 and jn,

|〈c(n)
jn

|c(n−1)
jn−1

〉|2 = constant ,

then the sum in Eq. (10.13) is a multiple of the identity matrix. (See Prob. 10.8.) Then the
numerator and denominator of Eq. (10.12) both reduce to 1, and we obtain P(c′k/a, cj , b) =
|〈c′k|cj〉|2.

We can therefore obtain the conventional formula from the ABL formula by including suit-
able measurements in the sequence of measurements preceding the final boundary condition.
If so, do we conclude that the ABL formula implies the conventional formulation? No, for if
we can screen the effects of the final boundary conditions, we can also screen the effects of
the initial boundary conditions. We obtained the result that if a measurement of C yields cj ,
the subsequent measurement of C ′ will yield c′k with probability |〈c′k|cj〉|2. This statement is
a prediction. But the ABL formula has no arrow of time; we can just as well obtain from it the
result that if a measurement of C ′ yields c′k, the prior measurement of C yielded cj with the
same probability |〈c′k|cj〉|2. This statement is a retrodiction. In our experience, the prediction
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is true but the retrodiction is false. Suppose, for example, we localize a photon in space. The
subsequent momentum of the photon is uncertain, so we cannot say in what direction the photon
will propagate; all directions are equally likely. But what about the direction of the photon’s
motion before the position measurement? Were all directions equally likely? No, the photon
arrived from a lamp, a star, or from some other source of photons. This source of asymmetry
in the direction of time is thermodynamic and cosmological; thermodynamics prescribes that
physical systems that are not in thermal equilibrium tend towards equilibrium. If macroscopic
physics did not provide this irreversibility, quantum mechanics could not itself generate it.

To conclude, the conventional formulation of quantum mechanics reflects the fact that
predictions (as described above) are valid, while retrodictions are not. The ABL formula does
not account for this fact and therefore does not imply the conventional formulation. By adding
to the ABL formula the postulate that P(c′k/a, cj , b) = |〈c′k|cj〉|2 is valid for predictions, but
not retrodictions, we do obtain the conventional formulation, which therefore contains an arrow
of time. The ABL formula, however, suggests that this arrow of time is not a quantum arrow
of time; its origin is macroscopic rather than microscopic.

10.5 Boundary Conditions on the Universe

According to the ABL formula, Eq. (10.8), all quantum processes are reversible if the rele-
vant Hamiltonian is reversible. Irreversibility is due to boundary conditions. What boundary
questions? Are they symmetric under time reversal?

Cocke, Schulman, and Hartle and Gell-Mann [5] have considered boundary conditions on
the universe that are symmetric in time. For example, let us consider a toy model universe
consisting of a box filled with a nearly ideal gas. In the equilibrium state, the gas fills the
box at constant density. But the initial state, at time t = 0, is far from equilibrium: all the
molecules in the gas occupy one corner of the box, and are completely absent from the rest of
the box. In the subsequent evolution, according to statistical mechanics, the gas approaches
the equilibrium state. However, suppose we impose a final boundary condition at time t = 2T :
we restrict the possible evolutions to those which lead, after a time 2T , to a final state identical
to the initial state. What is the evolution in this model?

With overwhelming probability the gas, with all the molecules initially in one corner, will
diffuse more and more evenly throughout the box. After a time not less than T , however, we
will see a strange phenomenon: the gas will begin to collect into the same corner of the box
where it originally clustered, until finally at time 2T the gas is back in its initial state. We can
distinguish three types of evolution, depending on T and the relaxation time. Let T0 be the
relaxation time of the initial state of the gas in the box; that is, without any special constraints
on the final state, the gas would evolve from its initial configuration to equilibrium in a time
T0. For T < T0, the gas will not reach equilibrium before it starts its reverse evolution towards
the final state. For T = T0, the gas will reach equilibrium but not remain there, whereas
for T > T0 the gas will reach equilibrium and remain there for a time 2(T − T0) before
evolving towards the final state. In each case, since the initial and final boundary conditions
are identical, the evolution is invariant under time reversal. The three cases are depicted in
Fig. 10.1, which shows results of a simulation of a finite number of particles and intermediate
states. Figure 10.1 reveals an important difference between the two cases T < T0 and T ≥ T0.
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Figure 10.1: Simulations of a version of the Ehrenfest urn model, with four distinct balls distributed
between two urns. At each time step either one ball or no ball (with equal probability) may jump from one
urn to the other. The number of balls in each urn defines the macrostate, and the entropy of the macrostate
is the logarithm of the number of arrangements of balls consistent with that macrostate. In the initial
state, all the balls are in the same urn, and the final state is identical to the initial state. The graph shows
entropy S divided by maximum entropy Smax as a function of time, averaged over many evolutions, for
2T ranging from 4 to 20 steps. The averages over many evolutions manifest time symmetry although
individual evolutions do not. The relaxation time T0 is approximately 8 steps. For 2T = 4 to 12 steps
(T < T0), the evolution never reaches equilibrium (maximum entropy), while for 2T = 18 to 20 steps
(T > T0), the evolution stays at equilibrium for a time and the final boundary condition is not evident in
the evolution to equilibrium.

If T is less than T0, the first half of the evolution is different from the evolution with no final
boundary condition. If T ≥ T0, however, the first half of the evolution is indistinguishable
from evolution with no final boundary condition. Only in the case T ≤ T0 could we detect,
before the time T , evolution towards a final boundary condition.

Our discussion of final boundary conditions on the universe continues in Sect. 18.3, but
without the assumption of time symmetry between initial and final boundary conditions. This
assumption seems unwarranted. As far as we know, the universe initially had minimal entropy,
and entropy has been increasing ever since. This increase in entropy is consistent with quantum
mechanics. Under unitary time evolution, pure states remain pure states; but product states
do not generally remain product states. Even if the state of the universe was initially a pure
product state, and evolved according to unitary time evolution, it is today highly entangled;
subsystems that once interacted locally have since separated to great distances. Locally, the
state of each subsystem is not a pure state, but a mixture, and has entropy. Thus quantum
mechanics offers an objective account of entropy increase, unrelated to “coarse graining”:
quantum entropy measures the entanglement of systems [6]. In particular, measurements
leave measuring devices and measured systems entangled. On the one hand, systems that
have interacted separate, increasing local entropy. On the other hand, unitary time evolution
insures that no measurement result ever disappears without a trace. Measured values, carefully
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recorded in laboratory notebooks, may still get lost; measuring devices may wear out; but
under unitary evolution, the correlations among them remain.

Problems
∗10.1 In Sect. 10.1, what operators could Madge measure in order to ascertain the result of

your measurement?

∗10.2 For a wave function ψ(x) defined on a line, show that the probability distributions for
position, |ψ(x)|2, and for momentum, |ψ̃(p)|2, do not determine ψ(x). Here

ψ̃(p) =
1√
2π

∫ ∞

−∞
dx ψ(x)e−ipx/� ,

∗10.3 (a) Show that if T is antilinear and |ψ(t)〉 and T 2|ψ(t)〉 represent the same physical
state, then T 2|ψ(t)〉 = ±|ψ(t)〉.
(b) For T and HT (t) in Eqs. (10.4) and (10.6), show that HT (t) = TH(t)T .

10.4 Consider a time reversal operator T and a system with Hamiltonian H such that
[H,T ] = 0. Let ψ(x, 0) be an arbitrary state of the system.
(a) Explain, without assuming Tψ(x, t) = ψ∗(x,−t), why eiHt/�Tψ(x, 0) and
Te−iHt/�ψ(x, 0) represent the same physical state.
(b) Show that T cannot be a linear operator.
(c) Let P represent parity. Would a version of this argument show that P cannot be a
linear operator?

10.5 Show that if the Hamiltonian H of a system commutes with T , then the Hilbert space
of the system has a basis of real eigenvectors of H .

10.6 Equations (10.8) and (10.10) apply to the measurement of an operator C with nonde-
generate eigenstates |ci〉. But if C has degeneracies, a generalized ABL formula [7]
applies. Show how to generalize the formula by replacing the projectors |ci〉〈ci|, etc.,
in the numerator and denominator of Eqs. (10.8) and (10.10) by projectors onto the
degenerate subspaces of C.

10.7 Consider the ABL formula, Eq. (10.11), modified as follows: in the numerator, we
sum over all intermediate measurements C(1), C(2), . . . , C(n) except for consecutive
measurements of observables C and C ′, where C = C(m−1) and C ′ = C(m) for some
m. In the denominator, we sum over the results of all intermediate measurements except
of the measurement ofC alone. Show that the ratio of the numerator and the denominator
does not depend on the measurements that preceded C. (See also Eq. (10.12).)

10.8 (a) Consider two observables, R and S, on the same Hilbert space of dimension n; the
eigenstates of R are |r1〉, |r2〉, |r3〉, . . . , |rn〉 and the eigenstates of S are |sj〉, where

|sj〉 = n−1/2
n∑
k=1

eijkπ/n|rk〉 .
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Show that the eigenstates |sj〉 constitute an orthonormal basis if the |rj〉 do and that for
every j and j′,

|〈rj |sj′〉|2 = 1/n .

(b) Show that for any normalized state |b〉, the sum

∑
j,j′

|rj〉〈rj |sj′〉〈sj′ |b〉〈b|sj′〉〈sj′ |rj〉〈rj |

equals I/n where I is the identity matrix.
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11 Superselection Rules

Our claim, throughout Chaps. 7–10, is that nonrelativistic quantum mechanics corresponds
completely with experiment: not only does the theory correctly predict the results of exper-
iments, it predicts just the results of possible experiments, neither more nor less. But many
physicists claim the contrary. Wick, Wightman and Wigner claimed, in 1952, that some Her-
mitian operators of nonrelativistic quantum mechanics can never be measured; thus theory
and experiment do not correspond completely [1]. They introduced the term superselection
rule; each superselection rule asserts that some Hermitian operator of quantum theory is not
an observable. Such a rule would invalidate our treatment of quantum measurements, because
we assume (following von Neumann) that any Hermitian operator is measurable. Since the
treatment of quantum measurements is central to this book, we must show that there are no
superselection rules in nonrelativistic quantum theory. (But in relativistic quantum theory,
there certainly are superselection rules; see Prob. 11.1 and Chap. 14.)

The argument of Wick, Wightman and Wigner uses the time reversal operatorT of Sect. 10.2.
Additional properties of T appear in Sect. 11.2, and Sect. 11.3 presents the Wick–Wightman–
Wigner argument. But first, Sect 11.1 presents a paradox concerning a measurement of angular
momentum. According to this paradox, angular momentum is not measurable. Yet there is no
superselection rule for angular momentum! After resolving this paradox, in Sect. 11.4, we can
resolve the argument about superselection rules.

11.1 Superselection Rule for Angular Momentum?

Imagine a closed, free-floating and isolated laboratory, with a Stern-Gerlach apparatus rigidly
mounted in it. The laboratory contains an isolated atom and we would like to measure the spin
component of the atom along the z-axis of Fig. 11.1. We measure Sz with the Stern-Gerlach
apparatus: the atom enters the apparatus perpendicular to the field gradient, and if it deflects
up, we say Sz is positive; if the atom deflects down, we say Sz is negative. Although this
is the standard way to measure the spin component of an atom, someone might criticize our
measurement as follows:

You cannot possibly measure the spin component of the atom. You and your labora-
tory and everything in it, including the atom, do not interact with anything else in the
universe during the experiment. Thus, the total angular momentum of the laboratory
and its contents is a conserved quantity. In particular, the total angular momentum
along the x-axis is a conserved quantity throughout the experiment. Now, the total
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Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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x

z

Figure 11.1: A Stern-Gerlach measurement (as in Fig. 7.2)
inside a space capsule. Note that the thrusters (rocket engines)
at the base of the capsule are not in use.

angular momentum along the x-axis is

Jx = Sx + Lx + J labx ,

where Sx is the x-component of the spin of the atom, Lx is the x-component of
the orbital angular momentum of the atom and J labx is the angular momentum of
everything else in the laboratory. Clearly Sz , the z-component of the spin of the
atom, does not commute with Jx, because it does not commute with Sx. So you
could not have measured it!

We might not accept this argument but there is something reasonable in it. According to
von Neumann, we can measure Sz with an interaction Hamiltonian of the form

Hint = g(t)SzPd ,

wherePd is conjugate to a “pointer” displacementQd that shows the result of the measurement.
(See Sect. 7.2.) The total Hamiltonian H is then

H = Hint +Hatom +Hlab ,

where Hint = g(t)SzPd applies to the measurement, Hatom applies to the atom and Hlab

applies to everything else in the laboratory. Now H and Jx do not commute, because [H, Jx]
contains the term [Hint, Sx] = i�g(t)SyPd and nothing else in [H, Jx] can cancel this term.
If H contains Hint, then Sx is uncertain and so Jx is conserved only approximately. But Jx
is exactly conserved!

This paradox is not limited to angular momentum. If von Neumann’s approach is wrong
for this measurement, it is wrong for many other measurements, as well. Any measurement
interaction that does not commute with each additive conserved quantity of the total system
(the measured system and measuring device) will lead to a paradox. For example, suppose we
want to measure the position of a particle in one space dimension. Let x denote the position
of the particle and p its momentum, and let P denote the momentum of the measuring device.
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If the particle and measuring device are free and isolated, apart from their mutual interaction,
then the total momentum p+P is a conserved quantity. But x does not commute with the total
momentum:

[p+ P, x] = [p, x] = −i� .
Apparently, either we cannot measure the position of the particle, or else p + P cannot be
a conserved quantity. A measurement of x makes p uncertain, and then there is no sense in
saying that p+ P does not change during the measurement.

11.2 T and Spin

The argument of Wick, Wightman and Wigner involves the time reversal operator T acting on
quantum spin states. Section 10.2 introduces T as an antilinear operator, and Eq. (10.4) defines
its action:

Tψ(x, t) = ψ∗(x,−t) .
However, Eq. (10.4) does not define the action ofT on states with spin. What does time reversal
do to spin?

Spin is a form of angular momentum, so we can infer the action of T on spin states from
its action on orbital angular momentum states [2]. Time reversal makes a spinning object spin
in the opposite sense, with the same angular speed. So the time reverse of a state of angular
momentumm� along the z-axis, for example, should be a state with angular momentum −m�

along the z-axis. Is it? Eigenstates of Lz , the z-component of orbital angular momentum, are
proportional to eimφ, where φ is the azimuthal angle about the z-axis and m� is the angular
momentum. According to Eq. (10.4), T sends eimφ to e−imφ, so indeed T replaces m� with
−m�. Writing the eigenstates of Lz as kets |m〉, we have

T |m〉 = | −m〉 . (11.1)

Here, as in Eq. (10.4), T could include an arbitrary overall phase factor. We have set it to 1 for
convenience.

We soon discover, however, that we cannot always set the phase to 1. Consider a spin-1/2
particle. The eigenvalues of Sz = �σz/2 are �/2 and −�/2. The corresponding eigenstates
are |1/2〉 and | − 1/2〉 in the notation of Eq. (11.1), or | ↑〉 and | ↓〉 in our usual notation.
Applied to | ↑〉 and | ↓〉, Eq. (11.1) yields

T | ↑〉 = | ↓〉 , T | ↓〉 = | ↑〉 . (11.2)

But Eq. (11.2) implies that

T
1√
2

(| ↑〉 + | ↓〉) =
1√
2

(| ↑〉 + | ↓〉) . (11.3)

Now (| ↑〉 + | ↓〉)/√2 is an eigenstate of Sx with eigenvalue �/2; according to Eq. (11.3),
T does nothing to Sx. But T must reverse the direction of Sx just as it reverses the direction
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of Sz . Thus Eq. (11.1) cannot define the action of T correctly. Note that it does not help to
include in T a phase factor that is the same for all spin states; T cannot reverse the direction
of Sx unless it multiplies | ↑〉 and | ↓〉 by different phases.

Once we realize that T must include a phase that depends on the spin state, it is not hard
to discover the action of T . We write

T | ↑〉 = eiα↑ | ↓〉 , T | ↓〉 = eiα↓ | ↑〉 . (11.4)

Then T reverses the direction of Sx if and only if

ei(α↑−α↓) = −1 . (11.5)

If T satisfies Eq. (11.5), and if T is an antilinear operator, then it also reverses the direction of
Sy . Indeed, T reverses the spin of any spin-1/2 state. (See Prob. 11.2.)

Now comes a little surprise. Suppose we act on the state | ↑〉 twice with T . We find

T 2| ↑〉 = Teiα↑ | ↓〉
= e−iα↑T | ↓〉
= e−iα↑eiα↓ | ↑〉
= − | ↑〉 , (11.6)

applying Eq. (11.5). Acting on the state, T 2 reverses the direction of time and then reverses it
again – so it should leave the state unchanged. We might have expected T 2 = 1, but actually
T 2 could equal any phase factor, since an overall phase does not change a physical state. (See
also Prob. 10.3.) What matters is that T 2 should equal the same phase factor for all physical
states – otherwise T 2 would change some superpositions of states. Computing T 2| ↓〉 as in
Eq. (11.6), we find that T 2| ↓〉 = −| ↓〉; hence T 2 = −1 for all spin-1/2 states, and two time
reversals leave any state unchanged.

And now comes a big surprise. For states |m〉 with Sz = m�, where m is an integer,
we assumed Eq. (11.1). But since T may include an m-dependent phase, we must modify
Eq. (11.1):

T |m〉 = eiαm | −m〉 .

In particular, T |0〉 = eiα0 |0〉. If we ask how T 2 acts on |0〉, we find T 2|0〉 = T (eiα0 |0〉) =
e−iα0T |0〉 = |0〉. So T 2 = 1 here! Of course if T 2|0〉 = |0〉, we must have T 2|m〉 = |m〉 for
all m = 0,±1,±2, . . . , otherwise T 2 would change some linear combinations of these states.
We can insure T 2 = 1 for all the |m〉 with integerm by assuming eiα−m = eiαm for all integer
m. However, we cannot define T 2 so that it acts uniformly on all spin states, both when m is
an integer and when it is not; T 2 does not act uniformly even on |0〉 and | ↑〉.
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11.3 The Wick–Wightman–Wigner Argument

The argument of Wick, Wightman and Wigner is now clear. Two applications of time reversal
must leave all physical states unchanged. But T 2 applied to a state such as

(|0〉 + | ↑〉)/√2
does not leave the state unchanged:

T 2 1√
2

(|0〉 + | ↑〉) =
1√
2

(|0〉 − | ↑〉) .

According to quantum mechanics, the states |Ψ+〉 ≡ (|0〉 + | ↑〉) /√2 and |Ψ−〉 ≡
(|0〉 − | ↑〉) /√2 are physically distinct. But according to the Wick–Wightman–Wigner argu-
ment, they are not. If |Ψ+〉 and |Ψ−〉 are not physically distinct, then any operator connecting
|0〉 and | ↑〉 must be unmeasurable. For example, define an operator A:

A = |0〉〈↑ | + | ↑〉〈0| . (11.7)

The expectation values of A in the states |Ψ+〉 and |Ψ−〉 are not the same. Indeed, |Ψ+〉 and
|Ψ−〉 are eigenstates of A with eigenvalues 1 and -1, respectively. If A is measurable, then
|Ψ+〉 and |Ψ−〉 are physically distinct. Thus A must be unmeasurable, and a relative phase
between |0〉 and | ↑〉 has no physical meaning.

We have seen that T 2 = 1 for any state |m〉 with integer m, while T 2 = −1 for any
state |m〉 with m = ±1/2,±3/2,±5/2, . . . . We refer to states with T 2 = 1 as boson
states, and states with T 2 = −1 as fermion states, in accordance with the spin-statistics
theorem [3]. (This theorem shows an intimate connection among rotation, time reversal and
interchange of particles in quantum theory.) Thus T 2 = 1 for bosons and T 2 = −1 for
fermions. According to Wick, Wightman and Wigner, any operator connecting boson and
fermion states is unmeasurable.

There is another argument in favor of this superselection rule. A rotation of 2π leaves
boson states unchanged, but gives fermion states a phase of -1. We can obtain the phase from
the operator for rotations. Let a unit vector n define the direction of an axis passing through
a particle, and let S be the spin operator for the particle. The operator e−iS·nθ/� rotates the
state of the particle an angle θ about the axis. Since the eigenvalues of S · n are m�, where
m = ±1/2,±3/2, . . . for fermions and m is an integer for bosons, a rotation of 2π gives
any fermion state a phase of −1 but leaves boson states unchanged. Suppose we prepare the
state |Ψ+〉. It is an eigenstate of the operator A defined in Eq. (11.7), and A|Ψ+〉 = |Ψ+〉. A
2π rotation transforms |Ψ+〉 into |Ψ−〉, and A|Ψ−〉 = −|Ψ−〉. Wick, Wightman and Wigner
claimed thatA is unmeasurable since a rotation through 2π should not change the value of any
observable.

11.4 Everything is Relative

The paradoxes of Sect. 11.1 force us to think about what we actually measure. One paradox
states that if the total momentum of a particle and a measuring device, p + P , is a conserved
quantity, then we cannot measure x, the position of the particle, because it does not commute
with the total momentum. But what is x? The absolute position of the particle? We cannot
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measure the absolute position of the particle any more than we can measure the absolute position
of the universe. What we actually measure is the position of the particle relative to the position
X of the measuring device, i.e. we measure x−X; the relative position does commute with
the total momentum p+ P ,

[p+ P, x−X] = 0 ,

so we can measure position despite conservation of momentum.
The solution of the paradox of angular momentum is just as simple. We cannot measure

absolute quantities. Do we really measure Sz? What defines the z-axis? We measure the
component of angular momentum of the particle along an axis attached to the laboratory, not
along an axis external to the laboratory. The Stern-Gerlach device measures S ·ez , where ez is
a unit vector along the axis of magnet in the device. (See Fig. 11.2.) The question is whether
S · ez , the angular momentum component along the axis of the magnet, commutes with Jx.
To see that it does, we define ez with respect to an external frame, in spherical coordinates:

ez = (sin θ cosφ, sin θ sinφ, cos θ) .

In the same spherical coordinates, Lx is

Lx = i�

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
,

and we require

0 = [Jx , S · ez] =
[
Lx +

�

2
σx ,

�

2
σ · ez

]
. (11.8)

It is straightforward to check that Eq. (11.8) holds. The lesson is that all measurements refer
to relative quantities. Even the time in a coupling g(t) is relative time; to be explicit, we can
write t− td instead of t, where td is a reference time.

If we now return to the Wick, Wightman and Wigner argument for a boson-fermion su-
perselection rule, we find it resembles these paradoxes. A rotation of 2π introduces a relative
phase of -1 between boson and fermion states; thus it takes a state such as (|0〉+ | ↑〉)/√2 to an
orthogonal state. Yet a 2π rotation should leave physical states unchanged. Now we stop and
ask: a 2π rotation with respect to what? On the one hand, a 2π rotation of the whole universe
leaves physical states unchanged. Indeed, a rotation of the universe through any angle leaves
physical states unchanged, because there is no meaning to rotation unless it is rotation with
respect to something that does not rotate. On the other hand, a relative rotation through 2π
could in principle change physical states. True, in classical physics a relative rotation through
2π does not change any physical state, but quantum physics is not classical physics.1 Thus,
we claim that the argument for a boson-fermion superselection rule confuses absolute and
relative. The rule only forbids measuring operators that we anyway cannot measure, because
they represent absolute quantities.

1Even in classical physics, a 2π rotation of one object with respect to another can change their physical state, if the
two objects are linked. For example, fix one end of a long ribbon and hold the free end near the fixed end. A complete
rotation of the free end twists the ribbon. But another complete rotation removes the twist: just loop the middle of the
ribbon around the free end.
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x

z
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Figure 11.2: The Stern-Gerlach measurement as in Fig. 11.1
showing the axes of the spin and of the magnet.

We can see the effect of a relative 2π rotation in a thought experiment on a neutron [4].
Consider two identical boxes, with a constant magnetic field inside each. (See Fig. 11.3.) The
magnetic fields are equally strong, and initially parallel. We will call one box the “nonrotating”
(NR) box and the other the “rotating” (R) box; the latter is free to rotate around an axis
perpendicular to the direction of the magnetic field. We can also separate the boxes or bring
them into contact; when they are in contact, we can open a small window in their common side.
Suppose that when the boxes are apart, the neutron Hamiltonian is H0 and the neutron ground
states |NR〉 and |R〉 have the same energy E, i.e. H0 is degenerate; but when the two boxes
are in contact with the window open, a small interaction term Hint allows the neutron to pass
from one box to the other and breaks the degeneracy. Then in addition to H0|NR〉 = E|NR〉
andH0|R〉 = E|R〉 when the boxes are apart, we haveHint|R〉 = −ε|NR〉 andHint|NR〉 =
−ε|R〉 when the boxes are in contact and the window open. The eigenstates of H0 +Hint are
not |NR〉 and |R〉 but rather the superpositions

|+〉 =
1√
2

(|NR〉 + |R〉) , |−〉 =
1√
2

(|NR〉 − |R〉) , (11.9)

with energies E+ = E − ε and E− = E + ε respectively. The interaction makes the neutron
tunnel between the boxes. Suppose that at time t = 0 we prepare the neutron in the state |NR〉,
which equals (|+〉 + |−〉)/√2. With the boxes in contact and the window open, the state of

N

S S

N

Figure 11.3: An apparatus to rotate, adiabatically,
one neutron wave packet relative to another, for the
thought experiment of Sect. 11.4.
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the neutron at time t > 0 is

1√
2

[
e−iE+t/�|+〉 + e−iE−t/�|−〉

]
,

and the probability to find the neutron in the state |NR〉 at time t is [1 + cos(2εt/�)]/2 =
cos2(εt/�). That is, the neutron is certainly in the state |NR〉 at times t = nh/2ε and certainly
in the state |R〉 at times t = nh/2ε+ h/4ε. The tunnelling current is

d

dt
cos2(εt/�) = − ε

�
sin(2εt/�) ,

and its magnitude is maximal at times t = nh/2ε± h/8ε, changing direction every h/4ε.
So far we have not rotated the “rotating” box. To demonstrate the effect of a relative 2π

rotation, we wait until the tunnelling into the state |R〉 is maximal, e.g. until time t = h/8ε,
then close the window and separate the boxes. Assume that we cut off the interaction instantly,
so the tunnelling stops just when the neutron is equally likely to be in either box. We now
effect a slow 2π rotation of the rotating box. During the rotation, the Hamiltonian for the state
|R〉 is

HR(t) = e−i(L+S)·nωt/�H0e
i(L+S)·nωt/� , (11.10)

where L is the angular momentum of the neutron, S is its spin, n is a unit vector along the axis
of rotation, and ω is the angular frequency of rotation. The instantaneous ground state of HR

is

e−i(L+S)·nωt/�|R〉 , (11.11)

and a 2π rotation (which lasts a time t = 2π/ω) turns the state |R〉 into −|R〉, since the
eigenvalues of L · n/� are integers and the eigenvalues of S · n/� are ±1/2. Only the state
|R〉 changes sign; thus the relative phase between |NR〉 and |R〉 changes by π. In addition,
there is a contribution to the relative phase due to the different energies of the neutron in the
two boxes (when one box is rotating). However, this contribution vanishes in the limit ω → 0.
Since we can make the rotation arbitrarily slow, we neglect this contribution.

Wick, Wigner and Wightman did not consider rotating |R〉 relative to |NR〉. The rotation
sends |+〉 to |−〉 and vice versa. If we now bring the boxes into contact and open the window,
we will find that the tunnelling into the state |NR〉 (and not |R〉) is maximal, because we have
reversed the relative phase between |+〉 and |−〉. This change in the tunnelling current would
(in principle) be observable.

Hence a relative 2π rotation yields an observable phase. We can express either |NR〉 or |R〉
as a superposition of a fermion and a boson – a fermion if the neutron is in the corresponding
box, a boson if it is not. (See Prob. 11.6.) A 2π rotation changes the relative phase of the
fermion and boson; but to observe this phase we must rotate one box relative to the other box. A
relative double time reversal would produce the same observable phase, except that we cannot
effect a relative double time reversal as we can effect a relative 2π rotation.
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11.5 Superposing Charge States

Wick, Wightman and Wigner also proposed a superselection rule for charge. A charge super-
selection rule asserts that, in a superposition of states |n〉 of different charges,

∑
n

cn|n〉 , (11.12)

only the absolute values of the coefficients cn, and not their phases, are measurable. The
argument for this rule draws on quantum field theory. The terms appearing in a quantum
field theory Lagrangian are products of fields Φj , one field for each particle. Each term must
conserve charge; an interaction term may create and destroy charged particles but must not
alter the net charge. As a consequence, each term has the following property: if we multiply
every field Φj by eiθQj , whereQj is the charge of the field (i.e. of the particles associated with
the field) and θ is a constant, then these phases cancel in each term; the terms do not acquire
phases. Thus every quantum field theory is invariant under eiθQ, where

eiθQΦj = eiθQj Φj .

It is plausible that the operator eiθQ leaves physical states invariant, too. However, it does not
leave Eq. (11.12) invariant. If eiθQ leaves physical states invariant, then the relative phases in
Eq. (11.12) cannot be measurable.

Here, too, we must ask what we expect to measure. Applied to the state of the whole
universe, eiθQ induces an absolute change in phase that we cannot expect to measure. However,
we can expect to measure changes of phase in one state relative to a reference state that does
not change. The challenge, then, is to build a suitable reference state. Let us build a reference
state |z〉 from a coherent superposition of mesons [5]:

|z〉 =
∑
n

zn

(n!)1/2
|n〉 . (11.13)

Here |n〉 is a state with n mesons, and z is a complex number. The mesons are positively
charged; a neutron absorbs one to become a proton, or a proton emits one to become a neutron.
We prepare the state |z〉 inside a cavity through which neutrons and protons pass. For the
interaction Hamiltonian, we take

Hint = g(t)(σ+a+ σ−a†) ,

where σ+ turns a neutron into a proton, σ− turns a proton into a neutron, and a†, a are meson
creation and destruction operators. (The state |z〉 is an eigenstate of awith eigenvalue z.) Note
that Hint conserves charge. The coupling g(t) is 1/T during the short time T the nucleon
passes through the cavity containing the coherent state of mesons; at all other times it is zero.
(We neglect the separate Hamiltonians of the nucleon and the mesons for this short time.)

Consider an initial state

1√
2
(|P 〉 + eiα|N〉) ⊗ |z〉 ,
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which contains a coherent superposition of a proton state |P 〉 and a neutron state |N〉. We
can calculate the evolution of this state for large |z|. After the nucleon and the meson cavity
interact, the state is

1√
2

[(
eiα cos

|z|
�

− i
z

|z| sin
|z|
�

)
|N〉 −

(
ieiα

z∗

|z| sin
|z|
�

− cos
|z|
�

)
|P 〉

]
⊗|z〉 (11.14)

which implies a neutron probability

1
2

− z∗eiα − ze−iα

4i|z| sin
2|z|
�

, (11.15)

so the relative phaseα is observable, relative to the phase defined for the cavity. (See Prob. 11.7.)
We could even prepare several meson cavities, which would define different reference phases;
to compare the phases, we could send nucleons in the same state through the different cavities.

Our conclusion from this chapter is that, contrary to the claim of Wick, Wightman and
Wigner, there are no superselection rules in nonrelativistic quantum mechanics. Any physically
meaningful Hermitian operator is measurable, and we find a satisfying agreement between
quantum measurement theory and what experiments can measure. (What Hermitian operator
is not physically meaningful? An example is the vector potential A. We cannot measure A, not
because of a superselection rule, but because A lacks physical meaning.) This agreement fails
when we impose the constraints of relativity on quantum mechanics. Then we find that some
Hermitian operators are not observables. This disagreement between quantum measurement
theory and what we can actually measure may underlie many unsatisfactory features of quantum
field theory. (See Chap. 14.)

Problems
∗11.1 Let φ(x) denote a boson field at a spacetime point x. The sum φ(x) + φ†(x) is a

Hermitian operator. In quantum field theory, φ(x) obeys the following commutation
relation:

[
φ(x) + φ†(x), φ(y) + φ†(y)

]
= 0, (11.16)

whenever the x and y are spacelike separated. Equation (11.16) expresses relativistic
causality: since x and y are spacelike separated, the two points cannot be causally
related; hence any operator defined at x must commute with any operator defined at y.
A fermion field ψ(x), however, obeys an anticommutation relation:

{
ψ(x) + ψ†(x), ψ(y) + ψ†(y)

}
= 0 ,

where {A,B} ≡ AB + BA. Derive a superselection rule for the Hermitian operator
ψ(x) + ψ†(x).

11.2 (a) Derive Eq. (11.5).
(b) Show that if T obeys Eqs. (11.4–5), then T reverses the spin of eigenstates of σy if
and only if T is antilinear.
(c) Show that T acting on any spin-1/2 state reverses the direction of spin.
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11.3 Show that Eq. (11.8) holds.

11.4 Write down the (time-dependent) Schrödinger equation for the Hamiltonian HR(t) in
Eq. (11.10). Assume it has a solution

|ψ(t)〉 = eiϕ(t)e−i(L+S)·nωt/�|R〉 ,

where ϕ(t) is a phase. (Indeed |ψ(t)〉 solves the Schrödinger equation to first order in
ω.) Fromϕ(t) calculate the relative phase between |R〉 and |NR〉 after a time t = 2π/ω;
show that it reduces to π modulo 2π.

11.5 Calculate the tunnelling current between |NR〉 and |R〉 (defined in Sect. 11.4) as a
function of time if at time t = 0 the state is (|NR〉 + eiα|R〉)/√2, where α is an
arbitrary phase.

11.6 Show how to rewrite |+〉, defined in Eq. (11.9), as follows:

|+〉 =
1

2
√

2
(|1〉NR + |0〉NR) ⊗ (|1〉R + |0〉R)

− 1
2
√

2
(|1〉NR − |0〉NR) ⊗ (|1〉R − |0〉R) .

Here |1〉NR represents the neutron in the nonrotating box and |1〉R represents the neutron
in the rotating box, so these are fermion states; |0〉NR and |0〉R represent the boxes empty,
so they are boson states. Show that if we remove one of the boxes, the remaining box
is in a mixture of two superpositions of fermion and boson states.

∗11.7 (a) Show that if [a, a†] = 1 and a|z〉 = z|z〉, then a†|z〉 = z∗|z〉 + |z⊥〉, where |z⊥〉 is
normalized and orthogonal to |z〉.
(b) Find the eigenstates of

∫
Hintdt = σ+a+ σ−a† in the approximation of large |z|,

i.e. neglecting the term |z⊥〉. (c) Derive Eq. (11.14) in the same approximation. (d)
Derive Eq. (11.15).
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12 Quantum Slow Dance

An elegant and useful tool in quantum mechanics is the Born–Oppenheimer approximation (a
form of the adiabatic approximation) The Born–Oppenheimer approximation applies to any
system with coupled degrees of freedom, when some of them (the “fast” variables) change
quickly and all the others (the “slow” variables) change slowly. We treat the motion in two
steps. First we “freeze” the slow variables and follow the motion of the fast variables. Anyone
speeding on a bicycle past pedestrians understands this step; the pedestrians seem almost
stationary. We then compute how the slow variables respond to the average fast motion, just
as the pedestrians avoid the passing bicycle. In this approximation, the fast and slow motions
couple asymmetrically. The fast motion depends on the configuration of the slow variables;
the slow motion does not depend on the configuration of the fast variables, but only on their
average motion.

Another elegant and useful tool in quantum mechanics is the Feynman path integral. The
Feynman path integral and the adiabatic approximation are related. We begin this chapter
with a paradox that leads right to the adiabatic approximation and the Born–Oppenheimer
approximation, to Berry’s phase and the Feynman path integral.

12.1 A Watched Pot Never Boils

Natura non facit saltum? What Schrödinger called “this damned quantum jumping around” [1]
disproves the classical statement that nature never jumps. Consider a simple quantum system:
a spin-1/2 particle precessing in a constant magnetic field. The Hamiltonian is

H = −µBSz = −µB�σz/2

where the z-axis points along the magnetic field; µ is the magnetic moment. If at time t = 0
the state is

|ψ(0)〉 =
1√
2

[| ↑〉 + | ↓〉]

(where | ↑〉 and | ↓〉 are eigenstates of σz), at time t it is

|ψ(t)〉 = e−iHt/�|ψ(0)〉
=

1√
2

[
eiµBt/2| ↑〉 + e−iµBt/2| ↓〉

]
. (12.1)

At t = 0, a measurement of σx is sure to yield σx = 1; at time t = π/µB, a measurement
is sure to yield σx = −1; at intermediate times, a measurement may yield either result. At
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162 12 Quantum Slow Dance

no time does a measurement of σx yield a value other than 1 and −1; the spin jumps from
σx = 1 to σx = −1 without passing through any intermediate value. Here is the “damned
quantum jumping around” of quantum spin. But nature jumps or not, according to which
measurements we make. Equation (12.1) represents a spin precessing with period 2π/µB. At
any time t, |ψ(t)〉 is an eigenstate of σx cos(µBt) − σy sin(µBt), so repeated measurements
of this observable do not show any damned jumping.

When does the spin jump? We do not know when it will jump, although we know when it
is likely to jump, and that it must jump between t = 0 and t = π/µB. The probability P (t)
that a measurement of σx at time t yields the result 1 is

P (t) = |〈ψ(0)|ψ(t)〉|2 = cos2(µBt/2) .

A measurement of σx at times close to t = 0 will likely yield 1, and a measurement of σx
at times close to t = π/µB will likely yield -1. The spin flip most likely occurs around
t = π/2µB. Can we observe when the spin jumps? We can make very many measurements
of σx between t = 0 and t = π/µB – a dense set of measurements. The jump in σx must
occur between two successive measurements. When it does, we will know when the jump
occurred, to an accuracy ∆t equal to the time between the measurements. Since we can make
the measurements as dense as we like, we can make ∆t as small as we like.

But now we seem to contradict the uncertainty relation for energy and time. Section 8.5
derives the uncertainty relation

∆E∆t ≥ �/2

with the interpretation that ∆E is the uncertainty in the energy of a system and ∆t is the
uncertainty in the time defined by the system. Here, the spin defines a moment in time by
jumping. We measure the time of the jump to an accuracy ∆t. Over a period of time ∆t the
energy is uncertain because we don’t know when the spin flips. But ∆E cannot be larger than
µ�B, the energy gap between the states | ↑〉 and | ↓〉. Hence we cannot make ∆t arbitrarily
small. Yet we can make the measurements of σx as dense as we like!

So we arrive at a paradox. The spin must flip, because (by assumption) at some time we
find the spin flipped. We can certainly make measurements of σx as dense as we like, and thus
measure the time of the jump in σx as precisely as we like. Yet the uncertainty principle states
that we cannot measure the time of the jump as precisely as we like. This paradox is the quantum
Zeno paradox [2], named after the ancient Greek philosopher who tried to understand motion
by dividing time into shorter and shorter intervals, and found himself proving that motion is
impossible. The quantum Zeno paradox arises whether we consider a spin, an excited atom
decaying to its ground state, or a particle tunnelling through a potential barrier. The question
is always the same: Can we find out when the system changes by continuously observing it?

12.2 The Adiabatic Approximation

There are no quantum jumps in this section. With no quantum jumps, this section may seem
unconnected with the last. Actually, it is closely related to the quantum Zeno paradox, but the
relation is explicit only in the next section. In this section, we eliminate quantum jumps.
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How do we eliminate quantum jumping? Consider a closed system in an eigenstate ofHf ,
a Hamiltonian with discrete, nondegenerate eigenvalues. If Hf does not depend on time, the
system never jumps to another state. What ifHf does depend on time? It can depend on time.
If we prepare the system in an eigenstate of Hf , and Hf changes quickly, the system may
jump to another state. But letHf change adiabatically (slowly); ifHf changes slowly enough,
the system never jumps to another state. Instead of jumping, it adjusts itself to the changing
Hamiltonian. The system behaves like a heavy weight hanging on a thin string. Pull the string
quickly – it snaps and the weight falls. Pull the string slowly – the weight comes up with it.

“Slowly enough” has the following formal sense. Let Hf depend on time only through
a changing vector R. The components of R could be quantum observables, but for now let
us treat them as slowly changing (classical) parameters. The eigenvalues and eigenstates of
H depend on R, so we write H(R)|Ψi(R)〉 = Ei(R)|Ψi(R)〉. Let a function r(t/T ), for
0 ≤ t ≤ T , define a path in the space of parameters, and let R[t] ≡ r[t/T ]. That is, R[t]
evolves from the beginning to the end of the path over the time interval 0 ≤ t ≤ T ; the larger
T , the slower the evolution. At time t = 0 we prepare the system in the state |Ψi(R[0])〉.
According to the quantum adiabatic theorem [3], the state of the system at time t = T is
|Ψi(R[T ])〉, with probability tending to 1 as T tends to infinity. At time t the state of the
system is |Ψi(R[t])〉.

The system also acquires a phase φi(t). Thus the state of the system at time t, in the
adiabatic approximation, is

eiφi(t)|Ψi(R[t])〉 . (12.2)

To determine φi(t), we substitute Eq. (12.2) into the time-dependent Schrödinger equation and
take the inner product of both sides with Eq. (12.2):

d

dt
φi(t) = i〈Ψi(R)|∇R|Ψi(R)〉 · dR

dt
− 1

�
Ei(R) .

Thus

φi(t) − φi(0) =
∫ t

0
dt′

[
i〈Ψi(R)|∇R|Ψi(R)〉 · dR

dt′
− 1

�
Ei(R)

]

=
∫ R[t]

R[0]
〈Ψi(R)|i∇R|Ψi(R)〉 · dR − 1

�

∫ t

0
dt′ Ei(R) . (12.3)

The integrand AB ≡ 〈Ψi(R)|i∇R|Ψi(R)〉 is Berry’s connection [4] for the state |Ψi(R)〉.
The integral − ∫ t

0 Eidt
′/� is called the dynamical phase.

Why compute the phase? The overall phase of a quantum state has no physical meaning.
But a quantum system may be in a superposition of states, each with its own phase. The relative
phase of these states is observable. Consider two paths R[t] and R′[t] with the same endpoints
R[0] = R′[0] and R[T ] = R′[T ], and suppose that the system evolves in a superposition
of states |Ψ(R[t])〉 and |Ψ(R′[t])〉. At time t = T , the relative phase of this superposition
contains two parts. One part is the relative dynamical phase (which vanishes if the states
acquire the same dynamical phase). The other part of the relative phase, Berry’s phase, is the
difference between AB integrated along R and AB integrated along R′, i.e. it is the circular
integral of AB along the closed path comprising R and R′ with opposite senses.
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The relative phase is observable, hence Berry’s phase must be well defined. Let’s check –
is the circular integral

∮
AB · dR

well defined? Is the connection AB = 〈Ψi(R)|i∇R|Ψi(R)〉 well defined? Actually, AB

is somewhat arbitrary, because |Ψi(R)〉 is somewhat arbitrary: if we multiply |Ψi(R)〉 by a
phase factor eiΛ(R), it remains the same instantaneous eigenstate of Hf (R); but AB changes
by −∇RΛ(R). If AB is not well defined, how can its integral, Berry’s phase, be well defined?

This question has an elegant answer. Multiplying |Ψi(R)〉 by the phase factor eiΛ(R) is a
local phase transformation – local in R-space. It is analogous to the local phase transformation
(in x-space) of Eq. (4.3). And AB is analogous to the electromagnetic vector potential A.
Since a local phase transformation of |Ψi(R)〉 induces a gauge transformation of AB , these
two transformations go hand in hand, just as they do in Sect. 4.3. Now Berry’s phase is the
integral of AB along a closed loop; so it is gauge invariant and well defined, just as the integral
of the electromagnetic vector potential along a closed loop is gauge invariant and well defined
and equal to the magnetic flux through the loop.

The thought experiment of Sect. 11.4 illustrates Berry’s phase. A magnetic field slowly
rotates, and a neutron polarized along the magnetic field rotates with it. For each complete
rotation, the neutron acquires a phase π (Berry’s phase) in addition to its dynamical phase.
This phase is observable.

Berry’s connection and Berry’s phase appear in several contexts in this chapter. In this
section, the context is the Born–Oppenheimer approximation [5]. In the Born–Oppenheimer
approximation, the components of R are not classical; they are quantum observables and may
not even commute. They evolve according to their own “slow” Hamiltonian Hs, and the
overall Hamiltonian is the sum H = Hf +Hs. By itself, the “fast” Hamiltonian Hf does not
induce quantum jumps; it does not change R, and its eigenvalues are (by assumption) discrete
and nondegenerate. The slow Hamiltonian changes R and can induce quantum jumps, which
complicate the overall evolution. Yet there is still a limit – the adiabatic limit – in which the
evolution simplifies. In the adiabatic limit, we treat Hs as an arbitrarily weak perturbation on
Hf . The weaker the perturbation, the smaller the probability of transitions (quantum jumps)
among the eigenstates of Hf . The unperturbed Hilbert space for H divides into subspaces,
one for each eigenvalue Ei of Hf . In the adiabatic limit, Hs does not cause transitions among
the subspaces; the “fast” variables remain in an eigenstate |Ψi(R)〉 of Hf , with i fixed, while
dynamical and Berry phases of |Ψi(R)〉 show up inH as induced scalar and vector potentials.

Let Πi denote the projector onto the subspace corresponding to Ei. These subspaces are
disjoint and form a complete set; hence [6]

∑
i

Πi = 1 .

If the adiabatic limit is a good approximation, we can replaceHs by
∑
iΠiHsΠi (no quantum

jumps) to obtain the effective Hamiltonian of Born and Oppenheimer:

Heff = Hf +
∑
i

ΠiHsΠi .
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In Heff there are induced potentials. To exhibit them, we consider [7] a generic Hamiltonian
for R and its conjugate momentum P:

Hs =
P 2

2M
+ V (R) ,

where M is large. The sum
∑
iΠiHsΠi in Heff contains products of the form

ΠiP
2Πi =

∑
j

ΠiPΠjPΠi . (12.4)

We can simplify Eq. (12.4) if we decompose P into two parts, P = (P − A) + A. The first
part acts only within each subspace; that is,

[P − A,Πi] = 0 , (12.5)

for every i. Only the second part, A, causes transitions among the subspaces. However, A
(like a vector potential) is somewhat arbitrary: if we add to A any term that commutes with
the Πi, then A still satisfies Eq. (12.5). We remove this arbitrariness by requiring

ΠiAΠi = 0 (12.6)

for each i. Equations (12.5–6) define A completely. In fact,

A = P −
∑
i

ΠiPΠi =
1
2

∑
i

[Πi, [Πi,P]] . (12.7)

Applying Eqs. (12.5–6) to Eq. (12.4), we get

ΠiP
2Πi =

∑
j

Πi(P − A + A)Πj(P − A + A)Πi

= (P − A)2Πi + ΠiA2Πi .

The effective Hamiltonian for the R, then, is

Heff = Hf +
1

2M
(P − A)2 +

1
2M

∑
i

ΠiA2Πi + V (R) . (12.8)

The sum in i is an induced scalar potential, while A is an induced vector potential.1 Indeed,
A is Berry’s connection AB in a non-abelian gauge.

As an example of an effective Hamiltonian, consider a very long, straight solenoid with all
its mass M concentrated at one end. The massive end moves freely, with coordinate R, while
the rest of the solenoid slews around in such a way as to always include the point R = 0.
The magnetic field inside the solenoid is BR/R. At R = 0 sits a spin-1/2 particle with fast
Hamiltonian

Hf =
µB�

2R
R · σ , (12.9)

1Part or all of the difference P 2/2M − ∑
i ΠiP

2Πi/2M is proportional to the velocity (P − A)/M of the
“slow” variables. Hence the slow variables must be slow, for the Born–Oppenheimer approximation to be applicable;
the limit M → ∞ is not sufficient.
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where µ is constant. Hf induces two subspaces, with projectors

Π± =
1 ± R · σ/R

2
. (12.10)

Inserting Eq. (12.10) into Eq. (12.7), we obtain

A = [R · σ/2R, [R · σ/2R,P]] =
�R × σ

2R2 (12.11)

as the induced vector potential for this problem. This A is guaranteed to satisfy the two
conditions (12.5–6). If we consider the subspace defined by Π+, the effective Hamiltonian for
the massive end of the solenoid is

Heff =
µB�

2
+

1
2M

(P − �R × σ

2R2 )2 +
�

2

4MR2 + V (R) .

Thus the mass moves in a scalar potential µB�/2 + �
2/4MR2 + V (R) and an SU(2) vector

potential for an effective field

Bi =
1
2
εijkFjk =

1
2
εijk(∂jAk − ∂kAj − i[Aj , Ak]) = − �Ri

2R4 (R · σ) .

(See Sect. 4.8 and Prob. 4.10.) Since σ ·R/R = 1 in this subspace, we have B = −�R/2R3.
The solution to Eqs. (12.5–6) yields an effective magnetic monopole at R = 0 – the mass at R
behaves like a charge in the field of a monopole at the origin! The induced field B is abelian,
although the abelian monopole appears in a non-abelian representation: it has no string.

We can generalize this result to arbitrary spin; if we write Eqs. (12.5–6) as algebraic
equations, the result holds for any representation of the algebra. So instead of Eq. (12.5) we
write

[P − A, Hf ] = 0 . (12.5′)

Equation (12.5′) is equivalent to Eq. (12.5) if the eigenvalues of Hf are independent of R, as
they are in Eq. (12.9). Instead of Eq. (12.6) we write

A = [Hf ,Λ] , (12.6′)

for some Λ. Equation (12.6′) implies Eq. (12.6) because if A satisfies Eq. (12.6′) then, for
every i,

ΠiAΠi = Πi[Hf ,Λ]Πi

= Πi [
∑
j

ΠjHfΠj ,Λ] Πi = 0 .

For Hf = µBR · S/R we have A = [Hf , iS/µB�R] = R × S/R2 as the solution to
Eqs. (12.5′-6′), thus the induced field is B = −(R · S)R/R4 for arbitrary spin S.

So far we have assumed the eigenvalues ofHf to be discrete and nondegenerate. IfHf has
a discrete and degenerate eigenvalue, Berry’s phase (and the induced field) may be non-abelian
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[8]. The eigenstates belonging to this eigenvalue do not (in the adiabatic approximation) jump
to eigenstates belonging to other eigenvalues, but they may mix among themselves. The
mixing amounts to multiplication by a non-abelian phase (i.e., a unitary matrix). Consider, for
example, the Hamiltonian

H =
P 2

2M
+ V (R) + g(R · S/R)2 ,

with S representing a spin-3/2 particle. The fast Hamiltonian Hf = g(R · S/R)2 has two
degenerate eigenvalues, g�2/4 and 9g�2/4. What potential A satisfies the equations for the
vector potential? Applying Eq. (12.7) we find

A =
1

4�2 [ (R · S/R)2, [(R · S/R)2,P] ]

=
1

4�2R2

[
4(R · S/R)(R × S)(R · S/R) + �

2R2R × S
]
.

The induced field is

B =
(R · S)R
2�2R4 [2S2 − �

2

2
− 4
R2 (R · S)2] .

For the states with R·S/R = ±3�/2, B reduces to −(R·S)R/R4 as in the abelian example; it
just happens that these two degenerate states do not mix. For the states with R ·S/R = ±�/2,
however, we find B = 3(R ·S)R/R4, which is −3 times the abelian example; for these states
B contains a truly non-abelian contribution.

12.3 Feynman Paths

Alongside the Schrödinger and Heisenberg formulations of quantum mechanics is the Feynman
path integral formulation [9]. Feynman considered all possible paths of a particle from an initial
spacetime point (xi, ti) to a final spacetime point (xf , tf ). To each path x(t) he assigned a
phase

ei
∫ tf

ti
Ldt/� ,

where L is the classical Lagrangian evaluated along the path. Feynman’s path integral is a
normalized sum of the phases of all these paths, and equals the value of the wave function of
the particle at the point xf at time tf , if at time ti the particle was at xi.

We may object that quantum particles do not move along paths. A path that defines the
position and velocity of a particle at each moment violates the uncertainty principle. How
can the path integral be consistent with the “quantum jumping around” of an electron in an
atom? To answer this objection, let us return to the quantum Zeno paradox of Sect. 12.1.
Once we resolve the paradox, we will appreciate the physical meaning of a Feynman path, and
will see how the path integral formulation follows from the formulations of Schrödinger and
Heisenberg.

A direct way to resolve the quantum Zeno paradox is to calculate what happens. The state
of the spin is |ψ(0)〉 = (| ↑〉 + | ↓〉)/√2 at time t = 0. Suppose we measure σx a total of N
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times, at equal time intervals, over a period of time T . The interval between measurements
is T/N . What is the probability of finding the spin unchanged after the first measurement?
According to Eq. (12.1), the state at time t = T/N is

1√
2

[
eiµBT/2N | ↑〉 + e−iµBT/2N | ↓〉

]
,

so the probability of finding the spin unchanged is cos2(µBT/2N). Hence the probability
of finding the spin unchanged at time T , after N measurements, is cos2N (µBT/2N). As N
approaches infinity, cos2N (µBT/2N) approaches 1. (See Prob. 12.8.) So the spin never flips!
In particular, consider the spin between the times t = 0 and t = T = π/µB. If we measure σx
only at time t = T , we will certainly find the spin flipped; if we measure σx densely between
t = 0 and t = T , we will not find the spin flipped at any time. If we continuously observe a
quantum jump, it never occurs. A watched pot never boils.

Shades of Zeno! We have proved that motion is impossible. But motion is not always
impossible. At any time t, the state |ψ(t)〉 in Eq. (12.1) is an eigenstate of σx cos(µBt) −
σy sin(µBt), so repeated measurements of this operator shows the spin to be precessing as
in Eq. (12.1). Motion is possible. Yet the resolution of the quantum Zeno paradox is a
surprise. Consider an experiment that is dual to the previous one, in the following sense:
instead of continuously observing σx on a spin that is precessing, we continuously observe
σx cos(µBt) − σy sin(µBt) on a spin that is not precessing. The Hamiltonian vanishes; there
is no magnetic field. But now we measure σx cos(µBt)−σy sin(µBt) at times t = nπ/µBN ,
wheren = 1, 2, 3, . . . , N . In the limitN → ∞, we find the spin precessing just as it did before;
each measurement of σx cos(µBt) − σy sin(µBt) yields 1. Here continuous observation –
rather than a magnetic field – causes the spin to precess. A watched pot boils – without a stove!

We can continuously observe any quantum state. If we continuously observe a decaying
atom, it never decays; if we continuously check whether a particle has crossed a barrier, it
never crosses. We can make a free particle scatter off a force-free region just by constantly
checking whether the particle has entered the region. Indeed, we can induce any evolution we
want in a quantum system.

Here is a general proof that continuous observation dictates the evolution of a quantum
system. Let |Ψ(R)〉, the state of a quantum system, depend parametrically on a vector R; R
could represent e.g. the polarization direction of a spin as in Prob. 12.4, or the displacement of
a localized state as in Prob. 12.7. The vector R changes in time along a smooth path R[t]. We
check whether the system evolves along the path R[t] by making a dense set of measurements.
Define tn ≡ nT/N , where n = 1, . . . , N . At times t = tn we check whether the system
is in the state |Ψ(R[tn])〉. Assuming we find it in the state |Ψ(R[tn])〉 at time t = tn, what
is the probability we will find the system in the state |Ψ(R[tn+1])〉 at time t = tn+1? It is
|K(tn+1, tn)|2, where

K(tn+1, tn) ≡ 〈Ψ(R[tn+1])|e−iHT/N�|Ψ(R[tn])〉

and H is the Hamiltonian of the system. Now we evaluate K(tn+1, tn) to order T/N . To this
order, K(tn+1, tn) reduces to two factors. One is a phase factor,

e−i〈H〉T/N� , (12.12)
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arising from the Hamiltonian: 〈H〉 is the expectation value of H in the state |Ψ(R[tn])〉. The
second factor in K(tn+1, tn) is

〈Ψ(R[tn+1])|Ψ(R[tn])〉 . (12.13)

To order T/N , it, too, is a phase factor. We can write it

1 − T

N
〈Ψ(R[tn])| d

dtn
|Ψ(R[tn])〉 . (12.14)

Since K(tn+1, tn) reduces to a phase factor, to order T/N , the probability |K(tn+1, tn)|2
equals 1 to order T/N . It then follows from Prob. 12.8 that the probability for the system to
be in the state |Ψ(R[tn])〉 at time t = tn for all n approaches 1 as N approaches infinity – the
limit of continuous observation. The quantum world fulfills our every expectation; it confirms
all our hopes, and also all our fears. Hence, be an optimist!

At time t = tN = T , we find the system in the state |Ψ(R[T ])〉, up to a phase factor.
An overall phase is not measurable. All the same, we will compute it; we will discover in it
the relative phase of a Feynman path, and then derive the path integral. The phase is the sum
of the phases in Eq. (12.12) and Eq. (12.14) for all n. The product over all n of Eq. (12.12)
approaches eiΦD , where the dynamical phase ΦD is

ΦD = −
∫ T

0
〈Ψ(R[t])|H|Ψ(R[t])〉dt/� ; (12.15)

ΦD generalizes the dynamical phase of Sect. 12.2. (In Sect. 12.2, |Ψ(R)〉 is an eigenstate of
the Hamiltonian with eigenvalue Ei and ΦD reduces to − ∫ T

0 Eidt/�.) The product over all n
of Eq. (12.14) approaches eiΦB , where ΦB is the integral of Berry’s connection:

ΦB =
∫ R[T ]

R[0]
〈Ψ(R)|i∇R|Ψ(R)〉 · dR . (12.16)

Although this integral is not invariant under a change in the phase of |Ψ(R)〉, the path integral
depends only on relative phases among paths, and the relative phase is invariant. The evolution
of |Ψ(R)〉 is not adiabatic here – |Ψ(R)〉 evolves according to continuous observation – but
we can still define (and measure) ΦB for any R[t] that defines a closed path in Hilbert space
[10]. (See Prob. 12.10.)

Let us now show that the sum of phases ΦB+ΦD equals the time integral of the Lagrangian
of the system, divided by �. We assume a generic Hamiltonian H = p2/2m + V (x) for a
three-dimensional particle. For |Ψ(R)〉 we take the normalized wave packet

|X,P〉 = (π∆2)−3/4e−(x−X)2/2∆2
eiP·x/� , (12.17)

a coherent state in the six-dimensional phase space of the particle. The parameters X, P
represent displacements in phase space. Consider a smooth path X[t],P[t] in phase space and
a sequence of measurements to check whether the particle is in the state |X[t],P[t]〉 at time t.
As the measurements become denser (the limit of continuous observation), the probability to
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find the particle evolving along this path approaches 1. What is its phase? To obtain ΦD we
compute

〈X,P|H|X,P〉 = 〈X,P|[ p
2

2m
+ V (x)]|X,P〉

= 〈0, 0|[ (p + P)2

2m
+ V (x + X)]|0, 0〉

=
P 2

2m
+ V (X) + O(∆2) + 〈0, 0| p

2

2m
|0, 0〉 . (12.18)

The term 〈0, 0|(p2/2m)|0, 0〉 in Eq. (12.18) is the same for all the paths and we drop it,
integrating the other terms to obtain ΦD. To obtain ΦB we compute the Berry connection:

〈X,P|i∇X|X,P〉 = 0 ,
〈X,P|i∇P|X,P〉 = − X/� . (12.19)

Integrating the connection by parts we have ΦB = − ∫
X · dP/� =

∫
P · dX/� up to end

terms that are the same for all paths. Combining ΦD and ΦB , we find that the phase of a path
in X,P approaches [11]

ΦB+ΦD =
∫

[P·Ẋ− P 2

2m
−V (X)+O(∆2)]dt/�+[X(0)P(0)−X(T )P(T )]/� . (12.20)

In classical mechanics, P · Ẋ −H and L are identical; hence Eq. (12.20) contains the phase∫
Ldt/�. Indeed, the relative phase ΦB +ΦD always reduces to an integral

∫
Ldt/� for some

Lagrangian L. (See Prob. 12.12.)
We now apply a mathematical trick:

1
(2π�)3

∫ ∞

−∞
d3Xd3P |X,P〉〈X,P| = 1 . (12.21)

The set of states |X,P〉 is overcomplete, but Eq. (12.21) is the identity operator, so we can
introduce it at times t1, t2, . . . , tN−1 into

K(T, 0) = 〈X(T ),P(T )|e−iHT/�|X(0),P(0)〉
to get (up to an overall phase)

K(T, 0) =
∫ ∞

−∞

[
N∏
n=1

〈Xn,Pn|e−iHT/N�|Xn−1,Pn−1〉
]
N−1∏
n=1

d3Xnd
3Pn

(2π�)3

=
∫ ∞

−∞
eiT

∑N
n=1[Pn·Ẋn−P 2

n/2m−V (Xn)+O(∆2)]/N�

N−1∏
n=1

d3Xnd
3Pn

(2π�)3
,

(12.22)

where we define Xn ≡ X(tn), Pn ≡ P(tn) for n = 0, 1, . . . , N , and

Ẋn ≡ Xn − Xn−1

T/N
.
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Equation (12.22) is a path integral in phase space. We obtain Feynman’s path integral in
configuration space (i.e. the sum of all paths from initial position X(0) to final position X(T ))
in two steps. First, we take the limit ∆ → 0. In this limit, |Xn,Pn〉 reduces2 to a δ-function
of Xn. Second, we integrate over d3P1, . . . , d

3PN−1, to obtain (up to normalization)

∫ ∞

−∞
d3X1 . . . d

3XN−1e
iT

∑N
n=1[m(Ẋn)2/2−V (Xn)]/N� . (12.23)

As N tends to infinity, the paths in the Feynman path integral become infinitely kinky; only a
subset of the paths, of measure zero, are smooth as we have assumed in deriving Eq. (12.20).
Yet Eq. (12.23) remains valid in the limit N → ∞. (See Prob. 12.14.) The square of the
absolute value of Eq. (12.23) is the probability density for a particle at X0 at time t = 0 to be
at XN at time t = T .

12.4 Classical Analogues

Section 12.2 presents Berry’s phase as a quantum effect, which, of course, it is. But Berry’s
phase has a classical analogue: Hannay’s angle [12]. (See Prob. 12.15.) It is not surprising
that Berry’s phase, which shows up in the classical action of a path integral, has a classical
analogue. The Born–Oppenheimer approximation, too, has a classical analogue. But some
quantum effects do not have classical analogues. (See Chap. 6.) What does it mean for a
quantum effect to have – or not have – a classical analogue?

Both Berry’s phase and the Aharonov–Bohm effect can affect electron interference. Con-
sider an example of a two-slit experiment in which polarized electrons pass through a magnetic
field, constant in magnitude but not in direction. (See Fig. 12.1.) Suppose that the electrons are
initially polarized along the magnetic field. Then, if the change in the direction of the magnetic
field is sufficiently gradual, the electrons will remain polarized along the field, and rotate with
it. If the amount of rotation depends on the path of the electron, a Berry phase will appear as a

Figure 12.1: A two-slit interference experiment with a
magnetic field. The magnitude of the magnetic field is
constant, but its direction is not: in the region of the lower
wave packet the direction is constant, while in the region
of the upper wave packet the direction gradually sweeps
out a cone, in such a way that the initial and final directions
in the upper region coincide with the direction in the lower
region.

2The reduction leaves behind the end terms [X0P0 −XNPN ]/� that appear in Eq. (12.20); they are arbitrary in
the limit ∆ → 0 and we drop them.
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shift in the pattern of interference between the two paths, just as if the paths went either side of
a shielded solenoid. But the Berry phase has a classical analogue; the Aharonov–Bohm effect
does not.

There is another difference between the Berry phase and the Aharonov–Bohm effect. The
Berry phase, unlike the Aharonov–Bohm effect, arises locally. Suppose that many physicists
probe the region where the electrons go – and only this region; each physicist, working alone,
checks a small, simply connected part of the region. The physicists then organize a conference
and compare their results. If they measured the magnetic field everywhere in the region where
the electrons pass, they can predict the shift in the electron interference due to Berry’s phase.
They do not have to do the interference experiment. But whatever they measure, they cannot
predict the shift due to the Aharonov–Bohm effect; the vector potential is not measurable. They
have to do the interference experiment to see the nonlocal exchange of modular momentum.
Nonlocal dynamical quantum effects have no classical analogues.

Problems

12.1 Show that if the state |Ψ(R)〉 is normalized, then 〈Ψ(R)|(∂/∂Rj)|Ψ(R)〉 is imaginary,
for each j.

12.2 Show that if we redefine the state |Ψi(R)〉 as

|Ψi(R)〉 → |Ψ′
i(R)〉 = eiΛ(R)|Ψi(R)〉 ,

where Λ(R) is any smooth scalar function of R, the Berry connection transforms
according to

AB → A′
B = AB − ∇RΛ(R) .

Show that the Berry phase is invariant under this redefinition of the state |Ψi(R)〉.
∗12.3 For nondegenerate states |Ψi(R)〉, prove that the induced vector potential A satis-

fying Eqs. (12.5–6) yields the same induced field B as the Berry connection AB ≡
〈Ψi(R)|i∇R|Ψi(R)〉, i.e. that A and AB are equivalent up to a gauge transformation.

∗12.4 (a) Calculate the Berry connection for a spin-1/2 particle polarized along an axis R;
show that (up to a gauge transformation) it equals

Aθ = 0 , Aφ = (cos θ − 1)/2 ,

where Rz = R cos θ and Rx + iRy = Reiφ sin θ. Show that the Berry phase for a
loop in R is −1/2 times the solid angle subtended by the loop at the origin R = 0.
(b) Show that the Berry connection is equivalent to the vector potential of a Dirac
monopole of strength 1/2 at the origin R = 0. Where is the Dirac string?

12.5 What induces the magnetic monopole of Prob. 12.4 and Eq. (12.11)? Consider a
Hamiltonian

Hf =
µB�

2
[σx cos(ωt) + σy sin(ωt)] ,
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corresponding to Eq. (12.9) with Rz = 0.
(a) Compute H ′ =U†HfU where U is a single-valued unitary transformation:

U = e−i(σz+1)ωt/2 .

(b) Derive the Schrödinger equation forH ′. Show that the direction of the spin deviates
from the plane Rz = 0 by an amount proportional to ω, for ω � µB.
(c) The Born–Oppenheimer approximation takes R and S = �σ/2 to be parallel;
yet they are not quite parallel and tend to align. Show [13] that the direction of this
tendency, and its velocity dependence, match the force on a charge moving in the field
of a monopole at the origin R = 0.

∗12.6 Prove that Fij ≡ −(i/�)[Pi − Ai, Pj − Aj ], where P − A satisfies Eqs. (12.5–6),
equals

Fij =
i

�

∑
k

Πk[Ai, Aj ]Πk .

∗12.7 Consider a Hamiltonian for a particle in a strong magnetic field:

Hf =
Ω
2

[
(px − y

2
)2 + (py +

x

2
)2
]
,

where Ω is the Larmor frequency. The definitions P ≡ px − y/2, Q ≡ py + x/2,
imply [Q,P ] = i� and lead to a harmonic oscillator Hamiltonian:

Hf =
Ω
2
(
P 2 +Q2) .

The eigenstates are degenerate (Landau levels). To this Hamiltonian we add a pertur-
bation,Hs(x, y). If we consider Π0, the projector onto the ground state, Eqs. (12.5–6)
become

[x−Ax,Π0] = 0 = [y −Ay,Π0] ,
Π0AxΠ0 = 0 = Π0AyΠ0 .

(a) Show that Ax = Q, Ay = −P solves these equations.
(b) Show that if the perturbation is Hs = ω(x2 + y2), then the effective perturbation
is a harmonic oscillator

Π0HsΠ0 = [(x/2 − py)2 + (y/2 + px)2 + �]ωΠ0 .

12.8 Prove that the limit

lim
N→∞

(
1 +

cN
N

)N

approaches 1 if

lim
N→∞

cN = 0 .
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12.9 Consider a dense set of measurements of σx cos(µBt) − σy sin(µBt) on a spin at
times t = nπ/µBN , where n = 1, 2, 3, . . . , N . The initial state of the spin is
(| ↑〉 + | ↓〉)/√2 at time t = 0, and no field acts on the spin. (The Hamiltonian
vanishes.) Show that, in the limit N → ∞, each measurement of σx cos(µBt) −
σy sin(µBt) yields 1.

12.10 Suppose a normalized state |ψ(t)〉 evolves according to the Schrödinger equation

i�
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉

such that |ψ(T )〉 = eiϕ|ψ(0)〉, where ϕ is real. Define a set of states |ψ̃(t)〉

|ψ̃(t)〉 = e−if(t)|ψ(t)〉

such that f(T ) − f(0) = ϕ.
(a) Show that

ϕ =
∫ T

0
dt

[
〈ψ̃(t)|i d

dt
|ψ̃(t)〉 − 1

�
〈ψ̃(t)|H|ψ̃(t)〉

]
.

(b) Show that
∫ T
0 dt〈ψ̃|i(d/dt)|ψ̃〉 depends only on the path of |ψ̃(t)〉 in Hilbert space,

i.e. it is gauge invariant in the sense of Prob. 12.2.

12.11 Derive Eq. (12.19).

12.12 (a) From Eqs. (12.15–16), which define the phases ΦB and ΦD for an arbitrary path
R[t], show that ΦB + ΦD =

∫ T
0 L{R, dR/dt}dt where L{R, dR/dt} contains time

derivatives of first order only, i.e.

L{R, dR/dt} = f0(R) +
∑
i

fi(R)dRi/dt

for some functions f0 and fi (i = 1, 2, 3, . . . ). Obtain the equations of motion for R
from L{R, dR/dt}.
(b) Let H = µB�σz/2, where µB is a constant. Define n to be a unit vector and
|n〉 to be a normalized eigenstate of n · σ with eigenvalue 1. Calculate ΦD and ΦB
(Eqs. (12.15–16)) for an arbitrary path in θ and φ, where θ and φ are angular spherical
coordinates for n. Show that ΦB + ΦD =

∫ T
0 L{θ, dφ/dt}dt where L{θ, dφ/dt}

equals

L{θ, dφ/dt} = −µB

2
cos θ − 1

2
(1 − cos θ)

dφ

dt

up to a total time derivative.
(c) Apply Lagrange’s equations to L{θ, dφ/dt} and show that the spin precesses with
constant θ at constant angular frequency µB.
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12.13 (a) Prove Eq. (12.21).
(b) Letn1 = sin θ cosφ, n2 = sin θ sinφ andn3 = cos θ, and let |n〉 be the normalized
eigenstate of n · σ with eigenvalue 1. The states |n〉 form an overcomplete set. Prove
that

1
2π

∫
dφdθ sin θ|n〉〈n| = 1 .

(c) Consider a particle with spin j, and define the state |φ〉:

|φ〉 =
j∑

m=−j
eimφ|m〉 ,

where Sz|m〉 = m�|m〉. Construct the identity operator from the projection operators
|φ〉〈φ|.

∗12.14 (a) Derive the Feynman path integral, Eq. (12.23), from Eq. (12.22), and show that the
normalization of Eq. (12.23) is [mN/ihT ]3(N−1)/2.
(b) Prove that typical paths in this path integral are those for which [X(tn+1) − X(tn)]

2

is of order T/N , for all n.

∗12.15 A classical adiabatic theorem [14] applies to certain classical systems that depend on
time through slowly changing parameters R. The classical theorem applies to motion
that is periodic in phase space. We can transform such motion into action I and angle
φ variables that are canonically conjugate. In the adiabatic limit, I is a constant of
the motion, the analogue of the energy quantum number. Hannay’s angle is an extra
shift in φ that a system acquires during a complete circuit in R, relative to the time
integral of the instantaneous angular frequency. The classical analogue of the Born–
Oppenheimer approximation applies to coupled fast and slow motion, where the fast
motion is periodic up to gradual changes due to the adiabatic change in R. For a
slow classical Hamiltonian Hs = P 2/2M + V (R), the condition corresponding to
Eq. (12.5) is [15]

{P − A, I} = 0 .

To fix A we need a condition analogous to Eq. (12.6). Eq. (12.6) requires that the
expectation value of A vanish in all the subspaces. The classical analogue is that 〈A〉,
the average of A, must vanish in averaging over the angle variable φ.
(a) Take Hf = µBR · S/R where the classical spin S obeys the Poisson relations

{Si, Sj} =
∑
k

εijkSk

Show that the action is I = R · S/R and that Hf = µBI .
(b) Show that A = R × S/R2 satisfies {P − A, I} = 0 and 〈A〉 = 0.
(c) Show that the effective adiabatic Hamiltonian 〈H〉 for this system is µBI + (P −
A)2/2M + (S2 − I2)/2MR2 + V (R).
(d) Obtain the field corresponding to A by differentiating the Poisson brackets among
components of P−A with respect to I; show that it corresponds to a monopole located
at R = 0.
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13 Charges and Fluxons

Previous chapters of this book treat quantum measurements within nonrelativistic quantum
mechanics, where they correspond well with what experiments can measure. In the next
chapter, quantum measurements go relativistic – and the correspondence breaks down. Here,
however, we take a break from quantum measurements. This chapter is exceptional in another
respect, too. While other chapters begin with quantum paradoxes, this one begins with a
classical (relativistic) paradox [1]. Although the paradox is entirely classical, its discussion and
resolution came as late as 1967. No one seems to have noticed it before. The paradox is crucial
for clarifying the entirely quantum interactions of “fluxons” and charges – the generalized
Aharonov–Bohm effect of this chapter.

13.1 Hidden Momentum?

Consider two infinitely long, concentric cylinders. One fits inside the other, but the cylinders
have nearly the same radius rc. (See Fig. 13.1.) The cylinders carry equal and opposite charge,
uniformly distributed, and have the same mass. They rotate in opposite senses, with equal

Figure 13.1: Two oppositely charged, concentric rotating cylinders,
with a heavy particle a distance x0 from their common axis of rotation.
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angular speeds; hence they have zero total angular momentum. At a distance x0 > rc from
the common axis of the cylinders, there is a heavy particle with charge Q. It does not move
relative to this axis. Now suppose that the cylinders gradually stop rotating, because of slight
friction between them. What happens?

Initially, the rotating cylinders enclose a uniform magnetic field B. This magnetic field
slowly drops to zero as the cylinders stop rotating. Maxwell’s equations imply that the changing
magnetic flux generates an electric field that circulates around the cylinders; this circulating
electric field makes the charged particle accelerate. Now that is odd: the linear momentum of
the particle was zero, and it is no longer zero; the total linear momentum of the cylinders was
zero and it remains zero. Yet no external forces act on the charged particle and the cylinders.
What happened to conservation of momentum?

Are we perhaps missing something? According to Poynting’s theorem, there is momentum
in the electromagnetic field, too. The field momentum Pfield is

Pfield =
1

4πc

∫
(E × B)d3x . (13.1)

To calculate Pfield, let the z-axis be the common axis of the cylinders and let the charged
particle lie initially on the x-axis. If the charge is far from the cylinders – i.e., if x0 � rc
– then inside the cylinders, the electric field E due to the charge is essentially independent
of x and y (though dependent on z). The initial electromagnetic momentum points along the
y-axis, as does the induced momentum of the charged particle. Do the electromagnetic and
mechanical momenta have the same magnitude, too? The only component of the electric field
contributing to Pfield is Ex, and at a point on the z-axis it has magnitude

Ex =
Qx0

(x2
0 + z2)3/2

;

hence the magnitude of Pfield is

Pfield =
πrc

2Qx0B

4πc

∫ ∞

−∞

dz

(x2
0 + z2)3/2

=
QBrc

2

2x0c
. (13.2)

On the other hand, Maxwell’s equations yield the magnitude of the transient electric field at
the position of the charge:

2πx0Ey = −1
c

dΦ
dt

,

where Φ is the magnetic flux in the cylinders. The force on the charged particle isQEy , so the
momentum of the charge, after the cylinders have stopped rotating, has magnitude

Py =
∫ ∞

−∞
dtQEy =

QBrc
2

2x0c
, (13.3)

and equals Pfield. Thus we have confirmed the conservation of momentum. Odd or not, the
charged particle has to accelerate in order to conserve the initial momentum in the electro-
magnetic field, as the cylinders stop rotating. Indeed, this example shows why there must be
momentum in the electromagnetic field [2].
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However, the closer we look at this resolution of the paradox, the less satisfactory it appears.
Initially, the cylinders rotate and the charge is a distance x0 from the axis of the cylinders, and
stationary. We calculated that the momentum of the electromagnetic field is QBrc2/2x0c and
points along the y-axis. Now let us move the charge along thex-axis to a new position a distance
x′

0 from the axis of the cylinders. We move it as slowly as we like, so that the charge scarcely
induces a magnetic field; meanwhile, the magnetic flux in the cylinders does not change (if
we neglect the friction between the cylinders). Then, when the charge has reached its new
position, the momentum of the electromagnetic field has changed to QBrc2/2x′

0c (along the
y-axis). But the charge has not acquired any momentum along the y-axis. What happened to
conservation of momentum?

We have assumed that the cylinders are infinitely long. Could the paradox be due to
this unphysical assumption? Prob. 13.1 implies that it is not. Moreover, this paradox has
another formulation, based on the following theorem: The total momentum in any stationary,
localized distribution of matter is zero. For example, Fig. 13.2 shows a toroidal solenoid with
a positively charged particle at its center; the charged particle does not move, and the current
in the solenoid is constant, so this matter distribution is stationary and localized. There are no
infinitely long cylinders here. But the momentum in the electromagnetic field need not vanish.
If the electromagnetic momentum does not vanish, how can the total momentum vanish?

To prove the theorem, we define the stress (or energy-momentum) tensor Tµν , a function
of space and time. The components of Tµν represent local densities of energy and momentum
and their fluxes: T 00/c2 is the local density of mass, T 0i/c is the local density of the i-
th component of momentum, and T ij is the local flux density in the direction j of the i-th
component of momentum. (Here 1 ≤ i, j ≤ 3.) The total stress tensor includes the energy
and momentum in the electromagnetic field as well as any mechanical energy and momentum.
From local conservation of energy and momentum, we infer that Tµν satisfies the equation

3∑
µ=0

∂µT
µν = 0 , (13.4)

where ∂0 ≡ ∂t/c ≡ (1/c)∂/∂t and ∂i ≡ ∂/∂xi. Equation (13.4) is analogous to the continuity
equation for electric charge and current. (See Prob. 13.2.)

Figure 13.2: A toroidal solenoid with a positive charge
at its center.
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Since the matter distribution is localized, mechanical energy and momentum vanish beyond
a certain distance. Also, electric and magnetic fields of localized charges and currents fall
off according to the square of the distance, or faster, at large distances; hence Tµν falls off
according to the fourth power of the distance, or faster. We now compute the total mechanical
and electromagnetic momentum of the matter distribution. It is the integral over all space of
the momentum density:

P i =
1
c

∫
T 0id3x

=
3∑
j=1

[∫
∂j
(
T 0jxi

)
d3x−

∫
xi∂jT

0jd3x

]
. (13.5)

The second line of Eq. (13.5) contains two integrals. The first integral reduces (by the diver-
gence theorem) to a surface integral:

3∑
j=1

∫
∂j
(
T 0jxi

)
d3x =

3∑
j=1

∫
T 0jxidSj ,

where dSj is an oriented area element for the surface bounding the volume of integration. This
integral must vanish because, at large distances, the area of the surface grows as the square of
the distance, while the integrand falls off as the third power of the distance or faster. The second
integral vanishes because the matter distribution is stationary, i.e. ∂0T

µν = 0; then Eq. (13.4)
implies that

∑
j ∂jT

0j = 0. Hence from Eq. (13.5) we infer that the total momentum P i is
zero.

Now back to Fig. 13.2. Let us suppose that the coils of the solenoid are not conducting
wires; rather, they are neutral glass tubes through which a gas of electrons flows. The tubes
are covered on the outside with a positive surface charge that cancels the electric field of the
electrons. A dilute gas of electrons does not screen the electric field of the positive charge
at the center of the solenoid. Hence the electromagnetic momentum of this configuration is
not zero; the crossed electric and magnetic fields within the solenoid yield an electromagnetic
momentum parallel to the axis of symmetry of the solenoid. According to our theorem, then,
the total mechanical momentum cannot be zero. But where is this mechanical momentum?

13.2 Duality of the Aharonov–Bohm Effect

Let’s try out a model Lagrangian for an electron and an infinitely thin solenoid or idealized
flux line – a “fluxon”. For simplicity, let space be two-dimensional; then we can represent both
the fluxon and the electron as points on a plane, with the magnetic field vanishing everywhere
except at the location of the fluxon. (We have not changed the topology – a closed electron
path has the same winding number whether it winds around a line in three dimensions or a
point in two dimensions.) Let R represent the position of the fluxon, and r the position of the
electron. If position of the fluxon is fixed, a Lagrangian for the electron is

L =
m

2
ṙ2 +

e

c
A(r − R) · ṙ , (13.6)
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where ṙ = dr/dt and A(r−R) is a vector potential, a function of the relative distance r−R.
This Lagrangian leads to the correct equation of motion for the electron,

mr̈j = m
d

dt
ṙj =

e

c

∑
i

ṙi(∂jAi − ∂iAj) ,

with mr̈ equal to the Lorentz force. What if the fluxon moves, too? We can modify Eq. (13.6)
by adding a kinetic term for the fluxon,

L =
m

2
ṙ2 +

M

2
Ṙ2 +

e

c
A(r − R) · ṙ , (13.7)

but we obtain an incorrect equation of motion for the electron:

mr̈j =
e

c

∑
i

ṙi(∂jAi − ∂iAj) +
e

c

∑
i

Ṙi∂iAj .

It contains, in addition to the Lorentz force, a force that is not gauge invariant, acting on the
electron even where the magnetic field vanishes. We can see what is wrong directly from the
Lagrangian. Suppose that for A in Eq. (13.7) we substitute A = ∇rΛ for some single-valued
scalar function Λ(r − R), so the magnetic field vanishes everywhere (even at the location of
the fluxon); then there is no interaction, and the interaction term in Eq. (13.7) should reduce
to a total time derivative. But ∇rΛ(r − R)ṙ is not a total time derivative. On the other hand,
∇rΛ(r−R)(ṙ− Ṙ) is a total time derivative. If we replace ṙ by ṙ− Ṙ in this term we obtain

L =
m

2
ṙ2 +

M

2
Ṙ2 +

e

c
A(r − R) · (ṙ − Ṙ) . (13.8)

Now Eq. (13.8) implies a gauge-invariant force that vanishes along with the magnetic field:

mr̈ =
e

c
(ṙ − Ṙ) × B = −MR̈ , (13.9)

where B = ∇r ×A(r−R). If Eq. (13.9) is valid, the electron and the fluxon exert a force on
each other only when they touch, and their total momentum is a constant of the motion.

Is Eq. (13.9) valid? As an equation of motion for a classical model, it is certainly valid.
A subtler question is whether Eqs. (13.8–9) yield a valid quantum model. Equations (13.8–9)
treat the electron and fluxon on an equal footing. We know that an electron diffracting around
a fluxon acquires a topological phase. This model therefore implies that a fluxon diffracting
around an electron acquires a topological phase. Does it?

Consider an electron passing a stationary fluxon. If the electron is a quantum particle, it
can divide into two wave packets as it passes the fluxon. Let the fluxon, too, divide into two
wave packets, before the electron passes, such that only one of the two fluxon wave packets lies
between the two electron wave packets as they pass. (See Fig. 13.3.) Now let two experimenters,
Alice and Bob, observe the electron and the fluxon, respectively. After the electron passes,
they each perform one of two measurements. Alice can perform a measurement that reveals
which path the electron took, or a measurement that reveals the relative phase between the
electron wave packets. These complementary measurements are analogous to measurements
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Figure 13.3: An electron and a fluxon, each in a superposition of two
wave packets; the electron wave packets encircle only one of the fluxon
wave packets.

in a double-slit experiment. Similarly, Bob can measure either the position of the fluxon or
the relative phase of the fluxon wave packets, after the electron goes by. Let us anticipate the
results of their measurements.

At the beginning of the experiment, the state |Ψin〉 of the fluxon and the electron is a
product state:

|Ψin〉 =
1
2
(|f1〉 + |f2〉) ⊗ (|e1〉 + |e2〉) ,

where |f1〉 and |f2〉 represent the two fluxon wave packets and |e1〉 and |e2〉 represent the two
electron wave packets. The state |Ψfin〉, after the electron has passed the fluxon, is no longer
a product state; the relative phase between |e1〉 and |e2〉 depends on the fluxon position:

|Ψfin〉 =
1
2
|f1〉 ⊗ (|e1〉 + |e2〉) +

1
2
|f2〉 ⊗ (|e1〉 + eiφAB |e2〉) .

Here φAB is the Aharonov–Bohm phase, and |f2〉 represents the fluxon positioned between
the two electron wave packets. Now suppose that Bob measures the position of the fluxon and
Alice measures the relative phase of the electron. By repeating this experiment many times
and comparing their results, Alice and Bob confirm the Aharonov–Bohm effect: Alice finds
the relative phase φAB if and only if Bob finds the fluxon between the two electron paths.

However, we can rewrite |Ψfin〉 as follows:

|Ψfin〉 =
1
2
(|f1〉 + |f2〉) ⊗ |e1〉 +

1
2
(|f1〉 + eiφAB |f2〉) ⊗ |e2〉 .

This simple rewriting has a profound consequence. Now suppose that Bob measures the relative
phase of the fluxon and Alice measures the position of the electron. They will discover an
effect that is dual to the Aharonov–Bohm effect: the fluxon acquires the phase φAB if and only
if the electron passes between the two fluxon wave packets. To complete the duality, we can
choose a reference frame in which the fluxon passes by the stationary electron. (The relative
phase between two wave packets cannot depend on the reference frame.) Then we find the
same relative phase whether the electron paths enclose the fluxon or the fluxon paths enclose
the electron.

This duality is just what Eqs. (13.8–9) imply. If an electron acquires a phase by encircling
a stationary fluxon, a fluxon acquires the same phase by encircling a stationary electron.
Equations (13.8–9) are just a two-dimensional model, but Eq. (13.9) is gauge invariant, and it
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implies (correctly) that the electron and the fluxon, when they do not touch, share a phase. These
features make Eqs. (13.8–9) a model worth studying, a model combining the Aharonov–Bohm
effect with Berry’s phase.

13.3 The Aharonov–Bohm Effect and Berry’s Phase

An electron winding around a solenoid acquires an Aharonov–Bohm phase. This phase is
topological: it is proportional to the winding number of the electron path around the solenoid.
If the enclosed flux is Φ and the path winds n times around the solenoid, the Aharonov–Bohm
phase is φAB = neΦ/�c. But what if the solenoid is neither inside the closed electron path
nor outside it, but on it? The question makes no sense if the electron is a classical point
charge, because – assuming that the electron does not penetrate the solenoid – it must pass
the solenoid on one side or the other. But the Aharonov–Bohm effect is a quantum effect, and
a quantum electron propagates as a wave packet. This electron “cloud” could pass on both
sides of a well shielded solenoid without ever penetrating it. Suppose it does; what would the
Aharonov–Bohm phase be?

We can apply the model of the last section, Eq. (13.8), to this question. Treat the solenoid
as a fluxon that moves while remaining perpendicular to a fixed plane, and an electron that
moves in the plane. The effective Hamiltonian in two dimensions is

H =
(p − eA/c)2

2m
+ V (r) +

(P + eA/c)2

2M
, (13.10)

where p and m are the momentum and mass of the electron, respectively, and P and M are
the momentum and mass of the fluxon. For the vector potential A we take

A =
Φ
2π

∇rθ(r − R) , (13.11)

where θ(r − R) is the (multivalued) angle of the vector r − R relative to a fixed vector in
the plane, and Φ is the flux of the fluxon. Equation (13.10) includes a binding potential V (r)
for the electron; it is convenient to bind the electron in a fixed potential. What happens if the
fluxon passes through the electron cloud? We cannot give a general answer, but if the fluxon
moves slowly, we can study this model in the adiabatic approximation. (See Sect. 12.2.) If,
in addition, the fluxon carries flux Φ = hc/2e – i.e., if it is a semifluxon – the analysis of the
model becomes simple and elegant.

Why a semifluxon? To see what makes a semifluxon special, let us define a rather artificial
time-reversal operation T sending p → −p, P → −P. (It is artificial because a true time-
reversal operation would send A → −A, as well. See Sect. 10.2.) In general, T is not a
symmetry of Eq. (13.10), because A = −A. But in the special case of a semifluxon, the
difference between A and −A is A − (−A) = 2A = (�c/e)∇rθ(r − R); it has the same
form as Eq. (13.11) but corresponds to Φ = hc/e – one flux quantum – at r = R. Any multiple
of the flux quantum is physically indistinguishable from no flux, hence A → −A is a pure
gauge transformation. (See also Prob. 13.5.)
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It follows that T is a symmetry of H , in some gauge.1 Now let the semifluxon slowly
move along a closed loop C. The adiabatic motion alters the state of the electron by an overall
phase factor, which in general includes a Berry phase ΦB(C) as well as a dynamical phase
ΦD. Time-reversal symmetry implies that the state acquires the same overall phase factor
eiΦDeiΦB(C) if the semifluxon moves along C in the opposite direction. (See Eq. (10.4).) The
dynamical phase is the same in the two cases, but the Berry phase changes sign. (See Eq. 12.3.)
Since the overall phase factor is the same, we have

eiΦDeiΦB(C) = eiΦDe−iΦB(C) ;

hence the Berry phase ΦB(C) can only be 0 or π (up to a multiple of 2π).
Now that is a surprise. What becomes of the phase ΦB(C) as we deform the path C?

Suppose the electron cloud lies entirely within a finite region S. Figure 13.4 shows a closed
fluxon path C1 outside the region S without enclosing it. For this path, both the Aharonov–
Bohm phase and Berry’s phase vanish. Now let us deform the path C1 into a large loop C2
that encloses the region S without touching it. For this path Berry’s phase equals π and it is
entirely the Aharonov–Bohm phase, since the path encloses all the charge.2 We can distort C1
into C2 in many steps, enlarging the loop by an infinitesimal region at each step. We might
have expected the phase ΦB of the loop to rise gradually from 0 to π – but we have discovered
that ΦB can only be 0 or π. It follows that some infinitesimal region contains a “singular point”
P such that ΦB jumps when we annex this infinitesimal region. But only degeneracy between
states of the electron can cause such a jump in Berry’s phase. (See Prob. 13.8.) Hence for any
binding potential V (r) there exists a point P such that, if a semifluxon is introduced there, the
state of the electron becomes degenerate with another state.

We see that, in the adiabatic limit, the Aharonov–Bohm phase and Berry’s phase combine is
a subtle way. We referred to ΦB(C) as Berry’s phase; but when the loop C encloses the entire
electron cloud without touching it, ΦB(C) is simply the Aharonov–Bohm phase. When C is
an infinitesimal loop about a point of degeneracy, ΦB(C) appears as Berry’s adiabatic phase;
but even for an infinitesimal loop, we can interpret ΦB(C) as the Aharonov–Bohm phase.
(See Prob. 13.6.) What is striking is that the Aharonov–Bohm and Berry phases combine in
a topological phase that depends only on the winding number of the fluxon path around the
point P in the electron cloud.

S
C1C2

Figure 13.4: An electron cloud with support in a region
S and two possible paths,C1 andC2, of a semifluxon. At
the point P , the semifluxon induces a degeneracy in the
energy of the electron.

1Explicitly, the gauge transformation that makes T a symmetry of H is A → A − ∇r(�c/2e)θ̄(r − R), where
θ̄(r − R) is the single-valued form of θ(r − R) and jumps by 2π along a half-line of constant (r − R)/|r − R|.
(See Prob. 13.6.) In this gauge A vanishes except along the half-line.

2The Aharonov–Bohm phase, unlike Berry’s phase, is defined even when the motion is not adiabatic; here, however,
the motion is adiabatic and Berry’s phase includes the Aharonov–Bohm phase.
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13.4 The Aharonov–Casher Effect

The topology of the Aharonov–Bohm effect is the same in two dimensions as in three: a closed
electron path has the same winding number whether it winds around a point in two dimensions
or a line in three dimensions. So a problem involving electrons and fluxons in three dimensions
often reduces to an effective problem in two dimensions. However, although there is just one
way to go from three dimensions to two, there are two inequivalent ways to go back. The
familiar way is to turn fluxons back into lines; but we could also turn electrons into lines of
charge, leaving the fluxons as points. Both ways preserve the topology. What happens if we
go the unfamiliar way?

In two dimensions, an electron and a (neutral) fluxon are dual. (See Sect. 13.2.) A
closed fluxon path around the electron, and a closed electron path around the fluxon, yield
the same phase φAB . If we go the unfamiliar way back to three dimensions, we arrive at
a new topological effect, dual to the Aharonov–Bohm effect in three dimensions: a neutral
“fluxon particle”, diffracting around a charged wire, should acquire a topological phase, just
like a charged particle diffracting around a line of flux [3]. The neutron, with its intrinsic
magnetic moment, is an example of a fluxon particle. (But unlike a solenoid, a neutron has
a nonvanishing field around it.) Hence a neutron should acquire a topological phase when it
diffracts around a line of charge. This effect, the Aharonov–Casher effect, has been observed
experimentally [4].

Topology aside, are the two effects truly dual? What is so striking about the Aharonov–
Bohm effect is that, even if the magnetic field of the solenoid vanishes all along the path of
the electron, the electron acquires an observable phase. In the Aharonov–Casher effect, the
neutron plows right through the electric field of the line of charge. The two effects are not
similar in this respect. The question, however, is whether the electric field acts on the neutron.
Does the line of charge exert a force on the neutron? If – and only if – it exerts no force on the
neutron are the Aharonov–Bohm and Aharonov–Casher effects truly dual.

To address this question, consider an infinitely long, straight solenoid that passes an in-
finitely long, straight line of charge; the solenoid and the line of charge remain parallel at all
times. (See Fig. 13.5.) We know that the solenoid and the line of charge exert no force on each
other. (See Sect. 13.2.) Now, a solenoid is equivalent to an infinite stack of identical current
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+

Figure 13.5: A line of charge and a solenoid, both straight and infinitely
long, parallel to each other.
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loops; each current loop is a magnetic dipole, like a neutron. Suppose the line of charge exerts
a force on one of the current loops in the stack. By symmetry, it exerts the same force on all
the current loops in the stack. But the sum of these forces vanishes: the line of charge exerts
no force on the solenoid itself. We conclude, therefore, that an infinitely long, straight line of
charge exerts no force on a current loop with polarization parallel to the line of charge.3

This conclusion seems, at first, paradoxical. The line of charge is the source for an electric
field E, while the magnetic field B vanishes. But since the neutron moves relative to the line
of charge, the neutron encounters a magnetic field B′; B′ is the Lorentz transform of E to the
rest frame of the neutron. The Lorentz transformation for B′ is [5]

B′ = γ(B − v
c

× E) − γ2

c2(γ + 1)
v(v · B) = −γv

c
× E ,

wherev is the velocity of the neutron with respect to the line of charge and γ = (1−v2/c2)−1/2.
For the force F on a current loop with magnetic dipole moment µ in a magnetic field B we
have a familiar formula:

F = ∇(µ · B) , (13.12)

so the force on the current loop does not vanish – µ · B′ is not constant in space.
We conclude that there is no force on a moving current loop – and also that there is a force!

Which conclusion is right? In trying to resolve this paradox, we might recall the paradox of
Sect. 13.1. Both versions of the paradox of Sect. 13.1 imply that there can be mechanical
momentum that is hidden from us – so far, at least. If hidden momentum resolves the paradox
of Sect. 13.1, perhaps hidden momentum resolves the paradox here, as well. So let us return
to the toroidal solenoid with the positive charge at its center, in Fig. 13.2. Where could the
mechanical momentum be hidden? For mechanical momentum, there must be moving parts.
The positive charge does not move, but the solenoid has moving parts: there are electrons
flowing in the tubes of the solenoid. The electrons have momentum, and they respond to the
positive charge by speeding up on their way in (towards the axis of symmetry of the solenoid)
and slowing down on their way out. Hence, their momentum on the inner side of the torus
exceeds their momentum on the outer side of the torus, and there is net mechanical momentum
along the axis of the torus.

Eureka! This must be the resolution of the paradox. The only problem with this resolution
is that a simple calculation disproves it. Consider a single tube in the solenoid. The linear
momentum density of the electrons in the tube ismvρ/e, wherem is the electron mass, ρ is the
linear charge density and v is the velocity of the electrons. But ρv equals the current I in the
tube. The current I must be the same all along the tube. (If it were not, charge would build up
somewhere in the tube; but the charge density everywhere is constant in time, by assumption.)
Since ρv is the same all along the tube, so is the magnitude of the momentum density. Hence
the total mechanical momentum of the particles vanishes.

As Einstein remarked, God is subtle but not malicious. Our simple calculation was too
simple: we used the nonrelativistic formula for mechanical momentum, yet the momentum

3This conclusion holds only if the line of charge is straight. By contrast, even a kinky solenoid exerts no force on
a passing electron.
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in the electromagnetic field vanishes in the limit c → ∞. Let us try the relativistic formula.
The current I = ρv is still the same all along the tube, but now the momentum density is not
mvρ/e. The momentum p of each particle is related to its energy E according to the equation

p =
E

c2
v .

Hence the momentum density of the particles is equal to Evρ/c2e; and E, unlike ρv, is not
constant all along the tube. The total mechanical momentum of the particles does not vanish!

As a test of this resolution of the paradox, we roughly calculate the mechanical momentum
and the momentum in the electromagnetic field. (For an exact calculation, see Prob. 13.9.)
Suppose that the electric and magnetic field strengths in the solenoid are constant and that the
solenoid cross section is a square of area L2. Let N denote the number of current loops in
the solenoid, and V the volume of the solenoid. The magnitude of the electromagnetic field
momentum is

Pfield = |E||B|V/4πc , (13.13)

where the magnetic field strength |B| equals

|B| = 4πINL2/V c . (13.14)

Combining Eqs (13.13–14), we obtain IL2|E|N/c2 for the momentum in the electromagnetic
field. On the other hand, each electron in the solenoid has e|E|L more energy when it moves
along the inner side (inner radius) of the solenoid than when it moves along the outer side
(outer radius). Hence from the outer side of the solenoid to the inner side, its momentum
increases by ev|E|L/c2. The density of particles in each tube is ρ/e, and there are N tubes in
the solenoid, so the magnitude of the mechanical momentum is IL2|E|N/c2, which coincides
with the magnitude of the electromagnetic momentum. The momenta have opposite signs,
however, and sum to zero.

So there is hidden mechanical momentum in the charged gas. Likewise, there is hidden
mechanical momentum in the rotating charged cylinders of Sect. 13.1. (See Prob. 13.11.) For
a current loop in a conductor the resolution differs qualitatively (since a conductor screens the
electric field of an external charge) but not quantitatively [?]. As regards a magnetic dipole we
can summarize the resolution as follows: the force on a magnetic dipole µ at rest in fields E
and B is

F = ∇(µ · B) − 1
c

d

dt
(µ× E) . (13.15)

For any model of a magnetic dipole involving current loops (but no magnetic monopoles),
Eq. (13.15) – and not Eq. (13.12) – is correct, in general. Equation (13.15) assumes that E and
B are constant over the magnetic dipole, i.e. that the magnetic dipole is small. In Eq. (13.15),
the term −µ×E/c represents the electromagnetic field momentum arising from the magnetic
dipole and the field E. (See Prob. 13.13.) For a magnetic dipole moving past a line of charge,
with µ parallel to the line of charge, the two terms in Eq. (13.15) cancel, so the force on the
dipole vanishes. (See Prob. 13.14.) Hence the Aharonov–Casher effect is indeed dual to the
Aharonov–Bohm effect [7].
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Problems

13.1 A particle of chargeQ sits a distance x0 from the axis of a straight flux line of negligible
thickness and length l. Compute the momentum of the electromagnetic field, in the
absence of screening, and show that it equals the momentum the particle acquires if
the flux drops to zero. (See Sect. 13.1.) What is the magnetic field due to the ends of
the solenoid?

13.2 Prove Eq. (13.4) for the ν = 1 component of Tµν by applying local conservation
of momentum to the flux of momentum through an infinitesimal volume, and the
divergence theorem.

13.3 (a) Derive Eq. (13.10) (without the potential V (r)) from Eq. (13.8).
(b) Show that the vector potential Eq. (13.11) corresponds to a singular flux Φ at the
position R of the fluxon.

13.4 In two space dimensions, we can imagine anyons, particles carrying any charge and
flux. What is the topological phase of an anyon of charge e1 and flux f1 winding n
times around a stationary anyon of charge e2 and flux f2?

∗13.5 “Objection! Section 13.3 states that A → A + (�c/e)∇rθ(r − R) is a pure gauge
transformation. But if the electron wave function Ψ(r−R) does not vanish at r = R,
its gauge transform, eiθ(r−R)Ψ(r − R), is not well defined!” Answer this objection
as follows:
(a) Consider the Schrödinger equation EΨ(r) = −(�2/2m)∇2Ψ + V (r)Ψ in two
dimensions, where V (r) is infinite for r ≥ r0 and vanishes for r < r0. Show that
the solutions Ψ(r) that are finite and nonzero at r = 0 are Ψ(r) = NJ0(kr) where
k =

√
2mE/�, J0 is the Bessel function of order 0,N is a normalization constant and

E satisfies J0(kr) = 0.
(b) Now impose the boundary condition Ψ(r) = 0 at r = a, to make room for a thin
solenoid of radius a at the origin. Obtain a solution of the form

cJJ0(k′r) + cNN0(k′r) ,

where k′ =
√

2mE′/� andN0 is the Neumann function (Bessel function of the second
kind) of order 0.
(c) Use the small-ρ expansions

J0(ρ) = 1 − ρ2/4 + . . . , N0(ρ) =
2
π

(
ln
ρ

2
+ CEuler

)
+ . . .

(where CEuler ≈ 0.5772), to show that cN approaches −πcJ/2 ln a as a approaches
0, that E′ approaches E, and that Ψ(r) approaches NJ0(kr) everywhere except for
r ≈ a. Explain how this solution overcomes the objection.

∗13.6 Consider a HamiltonianHe for a bound electron in the presence of a semifluxon at the
point R:
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He = (p + eA/c)2 + V (r) ,

where A is the vector potential in Eq. (13.11) with Φ = hc/2e.
(a) Prove that a nondegenerate eigenfunction ofHe has a null line, i.e. a line on which
the eigenfunction vanishes, and that this line stretches from the semifluxon to infinity.
(b) Show that if the semifluxon slowly crosses through the electron wave function, all
the charge of the electron passes the semifluxon on one side only.

13.7 Apply a suitable gauge transformation to the Hamiltonian of Eqs. (13.10–11) and show
that the eigenstates of the transformed Hamiltonian are eigenstates of the time-reversal
operation T of Sect. 13.3.

13.8 Consider a Hamiltonian H(x, y) depending on parameters x, y. The eigenstates of H
are nondegenerate and discrete, but two of them become nearly degenerate in a small
region. In this region, we truncate the Hilbert space for H to these two states and
replace H with an effective Hamiltonian

Heff = H0(x, y) +H1(x, y)σ1 +H2(x, y)σ2 +H3(x, y)σ3

using the Pauli matrices σi.
(a) Find the condition for a degeneracy at the point (x∗, y∗) and show that, in general,
there are no solutions. Show that ifHeff can be chosen real then there are, in general,
isolated points of degeneracy.
(b) Consider a cyclic adiabatic evolution ofHeff in which the parameters x, y describe
an infinitesimal loop about a point (x0, y0). Show that an eigenstate of Heff acquires
a nonzero Berry phase only if (x0, y0) = (x∗, y∗).

13.9 Consider a stationary, localized current loop with current density J sitting in a static
electric potential V . Show that the mechanical momentum,

Pmech =
1
c2

∫
d3xV J ,

of the current loop is equal in magnitude to the electromagnetic momentum, Eq. (13.1),
and opposite in sign. (Hint: use a vector identity and Maxwell’s equations to prove

∇ × (VB) = (4π/c)V J − E × B ,

where φ is the electrostatic potential and J is the current density.)

13.10 A particle carrying charge q winds around a solenoid and acquires an Aharonov–
Bohm phase. The solenoid is made of conducting coils and screens the electric field
of the particle; it thus acquires a dipole moment, and there is an electrostatic attraction
between the solenoid and the particle. Find a limit in which the Aharonov–Bohm phase
remains constant but the electrostatic attraction approaches zero.

∗13.11 A particle of chargeQ sits a distance x0 from two long, oppositely charged rigid cylin-
ders of nearly equal radius rc that rotate with constant but opposite angular speed about
their common axis, producing a magnetic field B inside. (See Sect. 13.1.)
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(a) Calculate the hidden momentum of the cylinders and show that it equals
QBrc2/2x0c.
(b) The hidden momentum of the cylinders cancels the momentum of the electromag-
netic field, Eq. (13.2), in keeping with the theorem in Sect. 13.1. But once the cylinders
stop rotating, there is no momentum in the electromagnetic field and no hidden mo-
mentum. Yet there is the momentum Py of the charged particle, Eq. (13.3). What
happened to conservation of momentum? Explain.

∗13.12 Next to a long conducting tube lies a heavy, uniform line of charge, parallel to the axis
of the tube. A uniform current circulates in the tube and generates a magnetic flux
through the tube. Since the tube screens the field of the line of charge, the momentum
in the electromagnetic field vanishes. However (if the tube is not a superconductor)
the current in the tube quickly decays, inducing a circulating electric field that acts
on the line of charge. The line of charge acquires momentum. What happened to
conservation of momentum? Compute the screening charge on a length L of the tube
and show that it acquires a total momentum equal and opposite to the final momentum
in a length L of the line of charge. Neglect end effects.

13.13 Consider a localized current distribution J in a uniform electric field E. Prove that the
momentum in the electromagnetic field is equal to

Pfield =
1

2c2
E ×

∫
(r × J)d3x ≡ 1

c
E × µ ,

where µ is the magnetic moment of the current distribution.

13.14 Consider a magnetic dipole of dipole momentµ passing a straight line of charge, withµ
parallel to the line of charge. Compute the electric field E′ and magnetic field B′ in the
rest frame of the dipole and substitute them for E and B, respectively, in Eq. (13.15).
Show that the force F in Eq. (13.15) vanishes.

∗13.15 A current loop with magnetic dipole moment µ, moving with velocity v, passes a
line of charge. The electric field E of the line of charge yields a magnetic field
B′ = −v×E/(c2 −v2)1/2 in the rest frame of the current loop. Equation (13.12) (but
not Eq. (13.15)) implies that the current loop feels a force ∇(µ · B′) in its rest frame.
Such a force, if it existed, could account for the Aharonov–Casher effect [8]. Assume
this force exists and show how to violate energy conservation by placing reflectors in
the path of the current loop.
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14 Quantum Measurements and Relativity

Previous chapters discuss nonrelativistic quantum mechanics. Is there a relativistic quantum
mechanics? In this chapter we assume that there is – and arrive at a paradox. The para-
dox concerns Lorentz transformations of quantum measurements. At the end of a quantum
measurement, an entangled state of the measured system and measuring device collapses to a
product state, according to von Neumann. (See Chap. 9.) The collapse is not Lorentz invariant,
so we try to make it Lorentz invariant. The paradox is that there seems to be no way to make
collapse Lorentz invariant.

The paradox concerns the collapse, not the correlations, of entangled states. If Alice and
Bob make local measurements, their results are Lorentz invariant, and the correlations in their
results are Lorentz invariant, as well. Bell’s inequality and Eq. (3.12) do not depend on how we
resolve the paradox of Sect. 14.1; nonlocal quantum correlations are nonlocal in any inertial
reference frame.

14.1 Collapse and Relativity

In 1927, at the fifth Solvay congress, Einstein presented “a very simple objection to the prob-
ability interpretation” of quantum mechanics [1]. Consider a beam of electrons incident on
a screen with a single slit. Some of the electrons pass through the slit and form a diffraction
pattern on a photographic plate on the other side. According to quantum mechanics, the state
of the electrons approaching the photographic plate is an extended object, and the probabil-
ity density for an electron to hit varies smoothly over the plate. Once the electron hits the
plate, however, the probability for the electron to hit anywhere else on the plate drops to zero.
Apparently, then, the state changes instantaneously when the electron hits the plate. But the
instantaneous collapse of an extended object is incompatible with relativity. So how can the
electron state collapse instantaneously?

Similarly, suppose we measure the momentum of a particle very carefully, taking as much
time as we need for the measurement. By the end of the measurement, the particle is in a
momentum eigenstate. At time t = 0 we turn on a particle detector at the origin and find
the particle there. According to von Neumann’s collapse postulate, the state of the particle
changes instantaneously, along the t = 0 hyperplane, from a momentum eigenstate to a position
eigenstate. (See Fig. 14.1 and Sect. 9.1.) The problem is that collapse along the t = 0
hyperplane will not be instantaneous for observers in other frames. Thus Fig. 14.2, the Lorentz
transformation of Fig. 14.1, makes no sense: the detector has found the particle at the origin,
yet the wave function of the particle does not vanish everywhere else.

Quantum Paradoxes: Quantum Theory for the Perplexed. Y. Aharonov and D. Rohrlich
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN 3-527-40391-4
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x

t

t=0

Figure 14.1: A position measurement at t = 0, with collapse
on the t = 0 hyperplane. The particle is in a momentum
eigenstate until t = 0.

x'

t'

t'=0

t=0

Figure 14.2: The collapse of Fig. 14.1 in a different frame.

x

t

t=0

Figure 14.3: Collapse along the past light cone of a measure-
ment.

Indeed, even Fig. 14.1 makes no sense. For according to Fig. 14.1, the wave function of
the particle did not vanish anywhere until t = 0. But since the particle cannot move faster than
light, it could not have been outside the past light cone of its detection at the origin at t = 0; the
wave function should vanish outside the past light cone. Could collapse perhaps occur along
the past light cone, as in Fig. 14.3? Collapse along the past light cone [2] would be Lorentz
invariant because light cones are Lorentz invariant. But for t < 0, Fig. 14.3 is not compatible
with any momentum eigenstate.

Another version of this paradox involves two distinguishable particles in an entangled state,
the singlet state |Ψ−〉:

|Ψ−〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) . (14.1)

(In Eq. (14.1), as in Eqs. (3.5–6), we let the order of the states in each tensor product index
the particles.) Equation (14.1) represents only the spin states of the particles, not their spatial
wave functions, but we assume that the two particles are localized to regions that are far from
each other. Figure 14.4 shows the spacetime history of the two particles. They emerge from
O in the entangled state |Ψ−〉 and fly off at nearly the speed of light in opposite directions.
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x

t

O

a
b

Figure 14.4: Measurements at a and b on particles that leftO
in an entangled state.

x'

t'

O

a

b

Figure 14.5: The events of Fig. 14.4 in a different frame.

One particle reaches Alice, who (at a) measures its spin component along some axis, and the
other particle reaches Bob, who (at b) measures its spin component along a (possibly different)
axis. Alice’s measurement is spacelike separated from Bob’s. In Fig. 14.4, a is earlier than
b, so by the time Bob makes a measurement, his particle is no longer entangled with Alice’s;
from the result of her measurement, Alice can anticipate the spin state of Bob’s particle. So
according to Fig 14.4, Alice’s measurement collapses the entangled state of the two particles.
But to an observer in another inertial reference frame, Bob’s measurement could come earlier.
Figure 14.5 shows the spacetime diagram for such an observer; the same events appear, but in
Fig. 14.5, b precedes a. For this observer, Bob’s measurement – not Alice’s – collapses the
entangled state. The two observers cannot agree on who collapsed the state. Even if we assume
that collapse occurs along the past light cone of a measurement, we cannot say whether it was
Alice’s or Bob’s measurement.

Let us fix a and put b at any point spacelike separated from a. In Fig. 14.5, b precedes
a, but the time order of a and b is relative since their separation is spacelike. As long as b is
outside the past light cone of a, there is always a frame in which a precedes b. There is a frame
in which Alice has already measured when Bob makes his measurements. Thus the collapse
cannot occur outside the past light cone of a. Hence it cannot occur outside the past light cone
of b either. It seems that collapse has not occurred only in the intersection of the past light
cones of a and b. Perhaps, then, collapse occurs on the (Lorentz invariant) boundary of this
intersection. (See Fig. 14.6.) If so, then the particles are in a product state when Alice and
Bob make their measurements. But now suppose many pairs of particles emerge from O in
the state |Ψ−〉. As in Fig. 14.4, one particle in each pair goes to Alice, the other to Bob. At
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O

a
b

Figure 14.6: Collapse on the boundary of the inter-
section of the past light cones of a and b.

a, Alice measures the spin components of all her particles, along various axes. Bob does the
same with his particles at b. If the pairs of particles are in a product state when they reach a and
b, the correlations in these measurements must be local, i.e. they must satisfy Bell’s inequality.
(See Sect. 3.4.) But the quantum correlations of |Ψ−〉 do not satisfy Bell’s inequality. So the
particles cannot be in a product state when Alice and Bob make their measurements.

14.2 Relativistic Constraints on Measurements

In 1931, Landau and Peierls [3] claimed that the theory of relativity imposes constraints on
quantum measurements, beyond the constraints of the Heisenberg uncertainty relations.1 They
based their claim on a paradox. Suppose that at an initial time t < 0, we localize a particle
in a small region of space; then at t = 0, we measure its momentum. Our measurement
leaves the particle in some eigenstate of momentum. For any eigenstate of momentum, the
probability density in space is uniform. So – whatever the result of our measurement – if we
look for the particle again at any time t > 0, we may find it anywhere. We may find it at a
spacelike separation from its initial position. Thus quantum mechanics contradicts relativity
theory. Landau and Peierls resolved this paradox by claiming that a measurement of momentum
cannot be instantaneous: a momentum measurement of accuracy ∆p cannot take time less than
∆t, where ∆t satisfies a relativistic uncertainty relation

∆p∆t ≥ �/c . (14.2)

Equation (14.2) follows from Heisenberg’s uncertainty relation ∆p∆x ≥ � if we assume
∆x ≤ c∆t. More generally, Landau and Peierls claimed that a measurement of any nonlocal
operator on a system cannot be instantaneous.

Let us apply their claim to a measurement of the total spin of two localized spin-1/2 particles
that are remote from one another [4]. As before, our friends Alice and Bob help us with the
measurement. Alice and Bob have prepared two spin-1/2 particles in the spin state

|Ψαβ〉 = α| ↑↓〉 + β| ↓↑〉 , (14.3)

with |α|2 + |β|2 = 1. Alice and Bob each take one of the particles; in the tensor products
of Eq. (14.3), the first spin state refers to Alice’s particle and the second to Bob’s. Let S(A)

and S(B) represent the spins of Alice’s and Bob’s particles, respectively. Let us assume that

1They also claimed that a measurement of the electric field cannot be impulsive. See Chap. 8.
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Alice and Bob can measure the operator S2 on |Ψαβ〉, where S = S(A) + S(B), and that their
measurements are impulsive and simultaneous (in some inertial reference frame). According
to the claim of Landau and Peierls, such a measurement contradicts relativistic causality. Does
it?

In general, |Ψαβ〉 is not an eigenstate ofS2, but |Ψαβ〉 can be written as a sum of eigenstates
of S2:

|Ψαβ〉 =
α+ β√

2
|2, 0〉 +

α− β√
2

|0, 0〉 ,

where

|2, 0〉 ≡ 1√
2

(| ↑↓〉 + | ↓↑〉)

is the eigenstate of S2 with S2 = 2�
2 and Sz ≡ S

(A)
z + S

(B)
z = 0, and

|0, 0〉 ≡ 1√
2

(| ↑↓〉 − | ↓↑〉)

is the eigenstate of S2 with S2 = 0 = Sz . Thus a measurement of S2 on |Ψαβ〉 must yield
2�

2 with probability |α+ β|2/2 and 0 with probability |α− β|2/2.
A special case of |Ψαβ〉 is the state | ↑↓〉, i.e. β = 0. Suppose that the two systems are

initially in the state | ↑↓〉, and consider two possible sequences of measurements on this state.
In one sequence, Alice and Bob measure S2 on the particles at time t1. The initial state is a
superposition of eigenstates of S2

| ↑↓〉 =
1√
2
(|2, 0〉 + |0, 0〉) .

A measurement of S2 must leave the particles either in the state |2, 0〉 or in the state |0, 0〉, with
equal probability. Now at a time t2 > t1 Alice measures the operator S(A)

z on her system. No
matter what the result of the S2 measurement, there is an equal probability for Alice to find
S

(A)
z = �/2 and S(A)

z = −�/2.
The second sequence of measurements is the same as the first, except that just before t1

– just before the measurement of S2 – Bob flips the spin of his particle from | ↓〉B to | ↑〉B .
(The subscript B refers to Bob.) He thereby changes the state of the two particles from | ↑↓〉
to | ↑↑〉. The state | ↑↑〉 is an eigenstate |2, 1〉 of S2 with eigenvalue 2�

2 and of Sz with
eigenvalue �. The measurement of S2 at t = t1 therefore yields 2�

2. As in the sequence
above, at t2 > t1 Alice measures the operator S(A)

z on her particle. But now Alice obtains
the result S(A)

z = �/2 with certainty! She is certain to obtain S(A)
z = �/2 just because Bob

flipped the spin of his particle before t1. By assumption, the time interval from t1 to t2 can be
arbitrarily short (since the S2 measurement is impulsive). Thus Bob’s local measurement can
affect the result of Alice’s measurement over a spacelike distance, in violation of relativistic
causality. Bob could transmit a superluminal signal to Alice if they repeated the experiment on
many pairs of spin. If Bob flips none of his spins, Alice obtains S(A)

z = −�/2 and S(A)
z = �/2

with equal probability; if Bob flips all his spins, Alice obtains S(A)
z = �/2 only.
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We arrive at this violation of relativistic causality by assuming that a measurement of S2

on the state | ↑↓〉 could be practically instantaneous. So Landau and Peierls were right when
they claimed that an instantaneous measurement of certain nonlocal operators would violate
relativistic causality. However, we have not shown that the instantaneous measurement of every
nonlocal operator on every state would violate relativistic causality. Let us consider a more
general measurement. We return to the entangled state |Ψαβ〉 in Eq. (14.3) – without assuming
β = 0 – and apply the two measurement sequences to this state. In the first sequence, Alice
and Bob measure S2 and then Alice measures S(A)

z on her particle. The outcome of the S2

measurement leaves the particles either in the state |0, 0〉 or in the state |2, 0〉. In either |0, 0〉
or |2, 0〉, the results S(A)

z = ±�/2 for Alice’s measurement are equally likely. The second
sequence is the same as the first, except that Bob first flips the spin of his particle. He thereby
changes the state from |Ψαβ〉 to

|Ψ′
αβ〉 = α| ↑↑〉 + β| ↓↓〉 ,

and |Ψ′
αβ〉 is an eigenstate of S2 with eigenvalue 2�

2. Hence the S2 measurement does not

change the state of the two particles. Now if Alice measuresS(A)
z on her particle, the probability

of the result S(A)
z = �/2 is |α|2 while the probability of the result S(A)

z = −�/2 is |β|2. So if
|α|2 = |β|2, such sequences of measurements would allow Alice and Bob to violate causality.

This analysis shows that an instantaneous measurement of S2 on any state |Ψαβ〉 with
|α|2 = |β|2 would be incompatible with relativistic causality. While it supports the general
claim of Landau and Peierls, it also suggests a loophole: perhaps a measurement of S2 on
|Ψαβ〉 could be instantaneous, only in the case |α|2 = |β|2. The next section shows that this
suggestion is correct.

14.3 Nonlocal Measurements

In this section we encounter a new kind of measurement. We will see how Alice and Bob
can verify that their spin-1/2 particles are in the singlet state |0, 0〉, with an instantaneous
measurement [5]. The state |0, 0〉 is the eigenstate of S2 with eigenvalue 0, so we will see
how Alice and Bob can measure S2 on this state, although – as the last section shows – they
cannot measure S2 on the state | ↑↓〉. Thus Alice and Bob find themselves verifying a state
instead of measuring an operator; unlike nonrelativistic quantum mechanics, which allows
an instantaneous measurement of any observable on any state, relativistic causality allows an
instantaneous measurement of S2 on some states but not on others!

To construct a quantum measurement that verifies S2 = 0, we apply the formalism of
Chap. 7. The first step in the construction is to show that Alice and Bob can measure Sz
without measuring either S(A)

z or S(B)
z . They do so with a Hamiltonian

Hint = g(t)
[
S(A)
z PAz + S(B)

z PBz

]
, (14.4)

after preparing their measuring devices in a state with

QAz +QBz = 0 = PAz − PBz . (14.5)
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HereQAz andQBz represent the positions of pointers on the measuring devices of Alice and Bob,
respectively; PAz and PBz are conjugate toQAz andQBz , respectively. The coupling g(t) is zero
except during the interval 0 ≤ t ≤ T , when g(t) = 1/T ; we assume thatT approaches 0, so the
measurement is impulsive. The twist in this measurement is that Alice and Bob prepare their
measuring devices in an entangled state, Eq. (14.5); it is, in fact, the entangled state of Einstein,
Podolsky and Rosen. (See Sect. 3.1.) Now applying the Heisenberg equations of motion, we
find that PAz and PBz do not change during the measurement, while QAz +QBz changes from
0 to the value S(A)

z + S
(B)
z . So Alice and Bob have measured Sz on their entangled state. But

they have not measured S(A)
z or S(B)

z , because neither QAz nor QBz is defined initially.

How much time does this procedure take? It takes some time to prepare the measuring
devices in the state of Eq. (14.5) and to bring them to where Alice and Bob use them. After
the impulsive measurement, it again takes some time for Alice and Bob to meet and compare
their results (the final values QAz (T ) and QBz (T ) that they have recorded in their notebooks).
But the interaction between the measuring device and the entangled particles is impulsive; the
measurement is instantaneous, because it fixes the result immediately. Alice and Bob read the
result only later, but the measurement is over when the interaction is over. Thus – contrary to
the claim of Landau and Peierls – there can indeed be instantaneous measurements of nonlocal
properties.

Now the state |0, 0〉 is the unique state for which the operators Sx, Sy and Sz all vanish.
Thus, if Alice and Bob measure these three operators on a pair of particles and obtain 0 for all
three, they have verified that the state is |0, 0〉. Such a measurement is plausible, because Alice
and Bob can measure Sx, Sy and Sz separately and instantaneously, as we have just seen. An
interaction Hamiltonian that includes these three measurements is

Hint = g(t)
[
S(A)
x PAx + S(B)

x PBx + S(A)
y PAy + S(B)

y PBy + S(A)
z PAz + S(B)

z PBz

]
.

(14.6)

Alice and Bob prepare their measuring devices in an initial state

QAx +QBx = 0 = PAx − PBx ,

QAy +QBy = 0 = PAy − PBy ,

QAy +QBy = 0 = PAy − PBy . (14.7)

We must check the evolution of 18 variables, namely six pointer positions and their conjugate
momenta, and six spin components. Despite the large number of variables, Eqs. (14.6–7) do
not present greater difficulty than do Eqs. (14.4–5). The conjugate momenta do not change,
since they commute with Hint. The evolution links pointer positions and spin components:

QAx (T ) +QBx (T ) −QAx (0) −QBx (0) = S(A)
x + S(B)

x = 0 ,
QAy (T ) +QBy (T ) −QAy (0) −QBy (0) = S(A)

y + S(B)
y = 0 ,

QAz (T ) +QBz (T ) −QAz (0) −QBz (0) = S(A)
z + S(B)

z = 0 , (14.8)
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while

S(A)
x (T ) + S(B)

x (T ) − S(A)
x (0) − S(B)

x (0)
= S(A)

z PAy + S(B)
z PBy − S(A)

y PAz − S(B)
y PBz = 0

S(A)
y (T ) + S(B)

y (T ) − S(A)
y (0) − S(B)

y (0)

= S(A)
x PAz + S(B)

x PBz − S(A)
z PAx − S(B)

z PBx = 0
S(A)
z (T ) + S(B)

z (T ) − S(A)
z (0) − S(B)

z (0)
= S(A)

y PAx + S(B)
y PBx − S(A)

y PAy − S(B)
y PBy = 0 . (14.9)

We have used the fact that S(A)
x + S

(B)
x = S

(A)
y + S

(B)
y = S

(A)
z + S

(B)
z = 0 for the singlet

state |0, 0〉; otherwise, the evolution would be more complicated.
Thus the procedure for verifying the entangled state |0, 0〉 is the following: at a time

t = 0 the measuring devices, in the entangled state of Eq. (14.7), are ready and in place in
the laboratories of Alice and Bob. Between times t = 0 and t = T , the coupling g(t) and
the Hamiltonian Hint of Eq. (14.6) are nonzero. At time t = T the interaction is complete,
and Alice and Bob check and record the pointer positions on their measuring devices. It still
takes them time to compare their records, but the measurement is complete. If Alice and Bob
obtain QAx +QBx = QAy +QBy = QAy +QBy = 0 after the measurement, they have verified
that Sx = Sy = Sz = S2 = 0.

14.4 Which Nonlocal Operators are Measurable?

The difference between local and nonlocal measurements of S2 is striking. If Alice and Bob
bring their particles together into one laboratory, they can measure the operator S2 on any spin
state; we can call their measurement an operator-specific measurement. By contrast, when
Alice and Bob (with their respective laboratories and particles) are far from each other, they
can at best verify eigenstates of S2. The previous section shows how Alice and Bob can verify
the state |0, 0〉, in what we can call a state-specific measurement; a modification of this mea-
surement would allow them to verify the state |2, 0〉. They could also verify the states |2, 1〉
and |2,−1〉 by local measurements of S(A)

z and S(B)
z , but these local measurements are incom-

patible with nonlocal measurements to verify |0, 0〉 and |2, 0〉. Thus Alice and Bob can verify
any eigenstate of S2, yet they cannot measure S2 in an instantaneous operator-specific mea-
surement. The distinction between operator-specific and state-specific measurements arises
only when we consider relativistic causality.

Now we ask, is there any nonlocal operator – any operator with entangled eigenstates – that
relativistic causality allows Alice and Bob to measure instantaneously? This section shows
that almost any such measurement would contradict relativistic causality. But (like Sect. 14.2)
it suggests a loophole; and as the next section shows, relativistic causality does allow Alice
and Bob to measure at least one nonlocal operator instantaneously [6].

As before, we consider spin operators. Consider pairs of distinguishable spin-1/2 particles,
with one particle of each pair in Alice’s laboratory and the other in Bob’s laboratory. Let W
be a nondegenerate operator on the Hilbert space of the two spins, and let W have, as one of



14.4 Which Nonlocal Operators are Measurable? 201

its eigenstates, the spin state |Ψαβ〉 of Eq. (14.3):

|Ψαβ〉 = α| ↑↓〉 + β| ↓↑〉 .

For simplicity, we take α and β real. Can Alice and Bob instantaneously measure W on their
spins? Let us suppose they can. Assume that Alice and Bob can measure W by means of
measuring devices that interact impulsively (and locally) with the spins, such that if the spins are
in the initial state |Ψαβ〉, the measuring devices verify this state without changing it, and record
the result; if the initial state of the spins is orthogonal to |Ψαβ〉, the measuring devices record
a different result, and leave the spins in an eigenstate orthogonal to |Ψαβ〉. (This assumption
holds for quantum measurements of any local observable.) The operatorW has three additional
eigenstates, which we denote |W1〉, |W2〉, |W3〉. They span the subspace orthogonal to |Ψαβ〉.
We need not define |W1〉, |W2〉 and |W3〉, but we define three orthonormal vectors that span
the same subspace: they are |Ψ⊥

αβ〉, | ↑↑〉 and | ↓↓〉, with

|Ψ⊥
αβ〉 = β| ↑↓〉 − α| ↓↑〉 .

Now Alice and Bob try the following experiment. First, they prepare an ensemble of pairs
in the singlet state |0, 0〉:

|0, 0〉 =
1√
2

[| ↑↓〉 − | ↓↑〉]

=
α− β√

2
|Ψαβ〉 +

α+ β√
2

|Ψ⊥
αβ〉 .

Second, they measureW instantaneously on each pair of spins. With probability (α−β)2/2 =
(1 − 2αβ)/2, their measuring devices record a result corresponding to the state |Ψαβ〉, and
leave the pair of spins in the state |Ψαβ〉. However, the measuring devices may record a result
corresponding to another eigenstate |Wi〉, and leave the pair of spins in the state |Wi〉. The
probability of this result is

(α+ β)2

2

∣∣〈Ψ⊥
αβ |Wi〉

∣∣2 =
1 + 2αβ

2

∣∣〈Ψ⊥
αβ |Wi〉

∣∣2 .

Finally, Alice measures S(A)
z and Bob measures S(B)

z .
What is the probability that Alice obtains S(A)

z = �/2? If the pair is in the state |Ψαβ〉,
the probability is |〈Ψαβ | ↑〉A|2 = α2, where | ↑〉A represents the state of Alice’s spin with

S
(A)
z = �/2. What if the pair is in the state |Wi〉? Then the probability that Alice obtains
S

(A)
z = �/2 is |〈Wi| ↑〉A|2. Since

〈Wi| = 〈Wi| ↑↑〉〈↑↑ | + 〈Wi| ↓↓〉〈↓↓ | + 〈Wi|Ψ⊥
αβ〉〈Ψ⊥

αβ | ,

we have

|〈Wi| ↑〉A|2 = |〈Wi| ↑↑〉|2|〈↑↑ | ↑〉A|2 + |〈Wi|Ψ⊥
αβ〉|2|〈Ψ⊥

αβ | ↑〉A|2
= |〈Wi| ↑↑〉|2 + |〈Wi|Ψ⊥

αβ〉|2β2 .
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Thus, the probability P (↑A) that Alice obtains S(A)
z = �/2 after the measurement of W is

P (↑A) =
1 − 2αβ

2
α2

+
1 + 2αβ

2

∑
i

|〈Wi|Ψ⊥
αβ〉|2

[|〈Wi| ↑↑〉|2 + |〈Wi|Ψ⊥
αβ〉|2β2] . (14.10)

Similarly, the probability P (↑B) that Bob obtains S(B)
z = �/2 is

P (↑B) =
1 − 2αβ

2
β2

+
1 + 2αβ

2

∑
i

|〈Wi|Ψ⊥
αβ〉|2

[|〈Wi| ↑↑〉|2 + |〈Wi|Ψ⊥
αβ〉|2α2] . (14.11)

Here relativistic causality imposes a constraint. After Alice and Bob prepare the ensemble
of pairs in the state |0, 0〉 but before they measureW , either Alice or Bob could change the state
of the pairs from |0, 0〉 to |2, 0〉. For example, by briefly subjecting her spins to a magnetic
field in the z-direction, Alice could change the relative phase between the terms | ↑↓〉 and | ↓↑〉
in |0, 0〉 as she likes, in an arbitrarily short time. So could Bob. These actions belong to a
general class of local operations, local unitary transformations. Local unitary transformations
are unitary transformations that apply only to Alice’s system or only to Bob’s (or products of
these). If Alice can affect P (↑B) or Bob can affect P (↑A) by such local actions, one can send a
superluminal signal to the other. So relativistic causality implies that if Alice and Bob prepare
their spins in the state |2, 0〉,

|2, 0〉 =
1√
2

[| ↑↓〉 + | ↓↑〉]

=
α+ β√

2
|Ψαβ〉 − α− β√

2
|Ψ⊥
αβ〉 ,

measureW , and measure S(A)
z and S(B)

z , the probabilities P (↑A) and P (↑B) must be the same
as in Eqs. (14.10–11). So besides Eqs. (14.10–11) we have

P (↑A) =
1 + 2αβ

2
α2

+
1 − 2αβ

2

∑
i

|〈Wi|Ψ⊥
αβ〉|2

[|〈Wi| ↑↑〉|2 + |〈Wi|Ψ⊥
αβ〉|2β2] ,

P (↑B) =
1 + 2αβ

2
β2

+
1 − 2αβ

2

∑
i

|〈Wi|Ψ⊥
αβ〉|2

[|〈Wi| ↑↑〉|2 + |〈Wi|Ψ⊥
αβ〉|2α2] . (14.12)

Equating P (↑A) − P (↑B) across Eqs. (14.10–11) and Eq. (14.12), we find that αβ = 0 or
α = ±β.

This conclusion holds for any nondegenerate operator W , on the Hilbert space of the two
spins, having |Ψαβ〉 as an eigenstate. But actually, local unitary transformations can reduce
any state in the Hilbert space of the two spins to the state |Ψαβ〉 for some α and β real. (See



14.5 Measuring a Nonlocal Operator 203

Prob. 14.4.) Just as Alice and Bob can change a relative phase by local actions, Alice can flip
or rotate her spin (without knowing what it is), or Bob can flip his; these actions, too, are local
unitary transformations. If Alice and Bob share a pair of spins in any state, they can reduce the
state to the form |Ψαβ〉 by local unitary operations. They cannot, however, change |α| and |β|.
Thus relativistic causality imposes the following condition: Alice and Bob cannot measure
W instantaneously unless each eigenstate of W equals |Ψαβ〉 – for some α and β satisfying
αβ = 0 or |α| = |β| – up to local unitary transformations.

This condition is necessary but not sufficient; S2 satisfies it, yet Alice and Bob cannot
measure S2 (or any nondegenerate operator with the same eigenstates) instantaneously. Does
W exist?

14.5 Measuring a Nonlocal Operator

Can Alice and Bob measure even one nonlocal operator instantaneously? Actually, they can.
To show how they can, we first consider a variation of the nonlocal measurements of Sect. 14.3.

Suppose Alice and Bob share a pair of spin-1/2 particles and wish to determine not S(A)
z +

S
(B)
z but [S(A)

z + S
(B)
z ] mod 2�. If the state of their spins is | ↑↑〉 or | ↓↓〉, they can simply

measure S(A)
z +S(B)

z to determine (S(A)
z +S(B)

z ) mod 2�. But what if the state of their spins is
(| ↑↑〉+| ↓↓〉)/√2? This state is an eigenstate of [S(A)

z +S(B)
z ] mod 2� but not ofS(A)

z +S(B)
z .

Alice and Bob cannot determine [S(A)
z +S

(B)
z ] mod 2� by measuring S(A)

z +S
(B)
z . They have

to measure [S(A)
z + S

(B)
z ] mod 2� directly. Can they?

Indeed, Alice and Bob can measure [S(A)
z +S

(B)
z ] mod 2� and S(A)

z +S
(B)
z with the same

Hamiltonian, Hint, of Eq. (14.4). But the initial (entangled) state of their measuring devices
must be different. To measure S(A)

z +S
(B)
z , Alice and Bob prepare their measuring devices in

the state QAz +QBz = 0. (Here, as in Sect. 14.3, QAz and QBz represent pointer positions, PAz
and PBz their respective conjugate momenta.) To measure [S(A)

z + S
(B)
z ] mod 2�, Alice and

Bob must prepare their measuring devices in the stateQAz +QBz = 0 mod 2�. As in Sect. 14.3,
Hint evolves QAz (0) +QBz (0) to

QAz (T ) +QBz (T ) = QAz (0) +QBz (0) + S(A)
z + S(B)

z ,

but now a final measurement of QAz (T ) +QBz (T ) fixes S(A)
z + S

(B)
z only up to a multiple of

2�, so Alice and Bob have measured [S(A)
z + S

(B)
z ] mod 2� but not S(A)

z + S
(B)
z .

How does this measurement affect the eigenstates of [S(A)
z + S

(B)
z ] mod 2�? We want

a measurement of [S(A)
z + S

(B)
z ] mod 2� on one of its eigenstates to leave the eigenstate

unchanged (up to an overall phase). Since

e−i ∫ Hintdt/� = e−i[PA
z S

(A)
z +PB

z S
(B)
z ]/� ,

we have

e−i ∫ Hintdt/� (| ↑↓〉 ± | ↓↑〉) = e−i(PA
z −PB

z )/2| ↑↓〉 ± ei(P
A
z −PB

z )/2| ↓↑〉 ,
e−i ∫ Hintdt/� (| ↑↑〉 ± | ↓↓〉) = e−i(PA

z +PB
z )/2| ↑↑〉 ± ei(P

A
z +PB

z )/2| ↓↓〉 .
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So the requirement that the measurement not change the eigenstates implies

ei(P
A
z −PB

z ) = 1 = ei(P
A
z +PB

z ) ,

i.e. PAz and PBz must be multiples of π and PAz −PBz must be a multiple of 2π. This constraint
is compatible with the assumption QAz +QBz = 0 mod 2�, hence Alice and Bob can measure
[S(A)
z + S

(B)
z ] mod 2� instantaneously. (See Prob. 14.6.)

Now consider an operator W with eigenstates |0, 0〉, |2, 0〉, (| ↑↑〉 + | ↓↓〉)/√2 and (| ↑↑〉
−| ↓↓〉)/√2. Alice and Bob can measure W instantaneously in four steps. In the first step,
Alice and Bob measure [S(A)

z +S
(B)
z ] mod 2� on their spins. This measurement distinguishes

|0, 0〉 and |2, 0〉, on the one hand, from (| ↑↑〉+ | ↓↓〉)/√2 and (| ↑↑〉−| ↓↓〉)/√2, on the other.
Next, they must distinguish |0, 0〉 from |2, 0〉 or (| ↑↑〉 + | ↓↓〉)/√2 from (| ↑↑〉 − | ↓↓〉)/√2.
To do so, Alice rotates her spin as follows:

| ↑〉A → (| ↑〉A − | ↓〉A)/
√

2 , | ↓〉A → (| ↑〉A + | ↓〉A)/
√

2 . (14.13)

Bob does the same to his spin. Equation (14.13) defines a local unitary operation. By applying
Eq. (14.13) to their respective spins, Alice and Bob interchange |2, 0〉 and (| ↑↑〉 − | ↓↓〉)/√2
while leaving |0, 0〉 and (| ↑↑〉+| ↓↓〉)/√2 unchanged. In the third step, Alice and Bob measure
[S(A)
z +S(B)

z ] mod 2� again. From the results of the two [S(A)
z +S(B)

z ] mod 2� measurements
they can positively identify each of the four eigenstates |0, 0〉, |2, 0〉, (| ↑↑〉 + | ↓↓〉)/√2 and
(| ↑↑〉 − | ↓↓〉)/√2 of W . Finally, Alice and Bob apply the inverse of Eq. (14.13) so that the
measurement of W returns the spins to their initial state.

Indeed,W is a nonlocal operator that Alice and Bob can measure. Each eigenstate ofW is
equivalent (up to local unitary transformations) to |Ψαβ〉 with α = ±β; we say it is maximally
entangled [7]. What about an operator with an eigenstate that is not entangled (αβ = 0)?
Can Alice and Bob instantaneously measure such an operator? A nonlocal operator must have
αβ = 0 for at least one eigenstate. So consider an operator having at least one maximally
entangled eigenstate and at least one product eigenstate. We can take these two eigenstates to
be2 | ↑↓〉 − | ↓↑〉/√2 and | ↑↑〉. Could Alice and Bob instantaneously measure an operator
with these two states as eigenstates? If they could, they could also do the following. Let Alice
and Bob prepare their spins in the state | ↑↑〉. Next, they measure the operator instantaneously.
Finally, Alice measures σz on her spin. She is certain to obtain σz = 1. But what if, just before
they measure the nonlocal operator, Bob flips his spin? He changes the initial state from | ↑↑〉
to | ↑↓〉, and now the measurement of the nonlocal operator has a chance of leaving the spins
in the state (| ↑↓〉 − | ↓↑〉)/√2 and Alice has a chance of obtaining −1 when she measures σz
on her spin. If so, Bob could send a superluminal signal to Alice. We conclude that Alice and
Bob cannot measure such an operator instantaneously.

To summarize, Alice and Bob can measureW instantaneously (although they cannot obtain
the result of their measurement instantaneously). However, W is essentially the only nonde-
generate nonlocal operator that Alice and Bob can measure instantaneously on their two spins.

2First, any maximally entangled spin state of the two particles is equivalent, up to local unitary transformations,local
unitary transformations to the singlet state |0, 0〉 = (| ↑↓〉− | ↓↑〉)/√2. (See Prob. 14.4.) Second, the singlet state is
invariant under any overall rotation – a rotation of Alice’s spin, and the same rotation of Bob’s spin – hence Alice and
Bob can bring the product eigenstate to the form | ↑↑′〉 where | ↑′〉B represents Bob’s spin polarized along some axis,
not necessarily the same as Alice’s z-axis. But nondegenerate eigenstates must be orthogonal. Hence | ↑′〉B = | ↑〉B .
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That is, Alice and Bob can measure only those operators related to W by local unitary trans-
formations. To measure any such operator – any nondegenerate operator with four maximally
entangled eigenstates – they can apply the local unitary transformations that transform it toW ,
measure W , and then apply the inverse transformations. The proof that suitable local unitary
transformations exist, for every such operator, is Prob. 14.8.

14.6 Collapse and Relativity Revisited

The paradoxes of Sect. 14.1 suggest that there is no Lorentz invariant account of collapse, and
the nonlocal measurements of Sects. 14.2–14.5 reinforce this suggestion. Suppose Alice and
Bob prepare a pair of distinguishable spin-1/2 particles in the entangled state |0, 0〉. Each has
a particle and, at time t = 0, measures its spin along some axis. Figure 14.7 shows Alice’s
measurement at a and Bob’s measurement at b. In addition, before a and b, at time t = −ε,
Alice and Bob verify that the state of the spins is |0, 0〉. For the verification measurement,
Alice has a device that interacts with her spin at aV and Bob has a device that interacts with
his spin at bV . Since the verification is instantaneous, ε can be arbitrarily small. (Alice and
Bob could even verify the state |0, 0〉 many times before t = 0, but in Fig. 14.7 there is just
one verification measurement.) So, without a doubt, the state of the spins up to t = 0 is |0, 0〉;
and without a doubt, after t = 0, the spins are in a product state. Thus, Alice and Bob directly
verify that the collapse of |0, 0〉 occurs on the t = 0 hyperplane, as the von Neumann collapse
postulate assumes. But then collapse is not Lorentz invariant.

Thus observers in different frames disagree about collapse. Their disagreement, however,
is not a contradiction. It would be a contradiction only if observers in different frames could
verify incompatible accounts of collapse; but they cannot. Figure 14.8 illustrates this point.
Alice and Bob verify the state |0, 0〉 at aV and bV ; in the frame of Figs. 14.7–8, aV and bV
are simultaneous. Then at a, Alice measures the spin of her particle along some axis.3 Now
suppose two more observers, Alex and Barb, decide to verify the state |0, 0〉 on the same pair
of particles. Alex has a device that interacts with his particle (which is also Alice’s particle) at
a′
V , and Barb has a device that interacts with her particle (which is also Bob’s particle) at b′V .

Then at b′, Barb measures the spin of her particle along some axis. But Alex and Barb cannot
verify the state |0, 0〉 because the events aV and bV disturb the state of the spins. Likewise,
Alice and Bob cannot verify the state |0, 0〉 because, following the event a′

V , the spins are no

x

t

t=0
b

bV
aV

a

t=- Figure 14.7: Alice and Bob verify the state |0, 0〉
at time t = −ε and immediately afterwards, at
t = 0, collapse the state with local measurements.

3How does the sequence of events look in another frame? In another frame, the verification of the entangled state
|0, 0〉 is not instantaneous. Since aV and bV are not simultaneous, the verification of |0, 0〉 starts with one of the
events aV , bV and continues until the other.
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x

t

b'

bV

b'V

aV

a

a'V

t=-

t'=-

Figure 14.8: Alice and Bob try to verify the state
|0, 0〉 at time t = −ε while Alex and Barb try
to verify the same state (on the same particles) at
time t′ = −ε; a and b′ are local measurements by
Alice and Barb, respectively.

longer in this state. The two state-specific measurements disturb one another. If they did not
disturb one another, Alice and Bob could verify that collapse occurs just after aV and bV , and
Alex and Barb could verify that collapse occurs just after a′

V and b′V . But they disturb each
other, saving us from this contradiction.

Indeed, observers in different frames disagree not only about collapse. They also disagree
about temporal order, length, energy, and all other physical quantities that are covariant but
not invariant. The paradoxes of Sect. 14.1 prove only that collapse is not Lorentz invariant.
In a Lorentz covariant collapse, observers in different frames could have different accounts
of collapse. In any frame, each passing moment defines an equal-time hyperplane. If we
reconsider the events in Figs. 14.4–6 we observe that, relative to any given frame, the singlet
state |Ψ−〉 always collapses on an equal-time hyperplane of that frame, i.e. on the equal-time
hyperplane4 that contains either a or b (whichever event is earliest). This observation is itself
a covariant statement about collapse [8]. There is even a concrete model that corresponds to
this statement of covariant collapse: it is the relativistic CSL model [9]. (See Sect. 9.2.) The
classical field w(x, t) in the CSL model transforms as a Lorentz scalar (just as the probability
of any measurement result is a Lorentz scalar), and the evolution equation for the state vector
|ψw(t)〉 (a generalization of Eq. (9.10)) insures that collapse happens almost instantaneously,
for a large enough measuring device, on an equal-time hyperplane in a given inertial reference
frame. Covariant collapse resolves the paradoxes of Sect. 14.1.

All the same, relativity poses a problem for quantum measurements. We have seen that
relativistic causality forbids an instantaneous measurement of almost all nonlocal operators
and states. Hence the Hermitian operators, and the states, of relativistic quantum theory
do not, in general, correspond to what experiments can measure. Ideally, a theory should
predict what experiments can measure, neither more nor less. Relativistic constraints spoil
the correspondence between quantum theory and what experiments can measure. This lack of
correspondence may account for some of the pathology of relativistic quantum theory.

4More generally, we can state that collapse happens separately on every spacelike hypersurface containing the
measurement event.
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Problems

14.1 Show that nonlocal correlations of spin measurements on electrons, or polarization
measurements on photons, are Lorentz invariant.

14.2 Show how Alice and Bob can modify the state-specific measurement of Sect. 14.3 to
verify that their spin-1/2 particles are in the state |2, 0〉.

∗14.3 (a) Consider three observers – Alice, Bob and Claire – who share a triplet of spins in
an entangled state. Suppose this state is the GHZ state:

|ΨGHZ〉 =
1√
2

(| ↑↑↑〉− ↓↓↓〉)

(See Sect. 3.4 and Prob. 3.13.) Show how Alice, Bob and Claire can, by local impulsive
measurements, verify the GHZ state without changing it.
(b) Suppose that the triplet of spins is in the state

α| ↑↑↑〉 + β| ↓↓↓〉
with |α| = |β|. Show that no instantaneous measurement can verify the state without
changing it.

∗14.4 (a) Show that any square matrix with complex entries is the product of a unitary matrix
and a Hermitian matrix.
(b) Suppose that Alice and Bob share a pair of systems in an arbitrary state |S〉,

|S〉 =
N∑

i,j=1

Sij |ai〉A ⊗ |bj〉B ,

where the states |ai〉A are an orthonormal basis for Alice’s system, the states |bj〉B
are an orthonormal basis for Bob’s system, and the Hilbert space of each system has
dimension N . Show that there are unitary transformations UA on Alice’s basis and
UB on Bob’s basis such that

|S〉 =
N∑
i=1

SDii |a′
i〉A ⊗ |b′i〉B , (14.14)

where |ai〉A = UA|a′
i〉A and |bi〉B = UB |b′i〉B for every i, and whereSD ≡ UAS(U∗

B)†

is diagonal with non-negative real entries. Equation (14.14) is known as the Schmidt
or polar decomposition of |S〉.
(c) So far, Alice and Bob have done nothing to their systems; Eq. (14.4) is a mere
rewriting of |S〉. Now let |S〉 be an entangled state of two identical systems having
eigenstates |1〉, |2〉, . . . , |N〉:

|S〉 =
N∑

i,j=1

Sij |i〉A ⊗ |j〉B .
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Show that if Alice and Bob apply local unitary transformations UA and UB , respec-
tively, to their systems, they transform the state |S〉 to the diagonal form

UAUB |S〉 =
N∑
i=1

SDii |i〉A ⊗ |i〉B .

14.5 Show that the conclusion of Sect. 14.4 is unchanged if the eigenstates of W that are
orthogonal to |Ψαβ〉 are degenerate.

14.6 The measurement of [S(A)
z + S

(B)
z ] mod 2� in Sect. 14.5 assumes an entangled initial

state of the measuring devices. The initial state must be an eigenstate of QAz + QBz
mod 2� with eigenvalue 0 and an eigenstate of ei(P

A
z ±PB

z ) with eigenvalue 1. Show
that these requirements do not define the initial state uniquely.

14.7 Consider an operator with eigenstates

| ↑〉A ⊗ | ↑〉B ,

| ↑〉A ⊗ | ↓〉B ,

| ↓〉A ⊗ | ↑′〉B ,

| ↓〉A ⊗ | ↓′〉B ] ,

where | ↑〉A and | ↓〉A are spin states of Alice’s particle and | ↑〉B , | ↓〉B , | ↑′〉B and
| ↓′〉B are spin states of Bob’s particle (with B〈↑′ | ↓′〉B = 0). Show that if Alice and
Bob could instantaneously measure this operator, then Alice could send a superluminal
message to Bob, unless B〈↑ | ↑′〉B = 0 or B〈↑ | ↓′〉B = 0.

14.8 Consider an operator with four maximally entangled eigenstates, linear combinations
of | ↑↑〉, | ↓↓〉, | ↑↓〉 and | ↓↑〉, in the spin space of Alice’s and Bob’s particles. Show
that Alice and Bob can, via local unitary operations, transform these eigenstates into
the eigenstates of the operator W of Sect. 14.5.
(a) Prob. 14.4 implies that they can bring one of the eigenstates to the singlet form
|0, 0〉 = (| ↑↓〉 − | ↓↑〉)/√2. Show that any maximally entangled state orthogonal to
|0, 0〉 can be written (up to an overall phase)

cos θ
[
eiϕ| ↑↑〉 + e−iϕ| ↓↓〉] /√2 + i sin θ [| ↑↓〉 + | ↓↑〉] /

√
2 .

Show that either Alice or Bob can eliminate the phases e±iϕ by applying a local unitary
transformation, e−i2ϕS(A)

z /� or e−i2ϕS(B)
z /� respectively, that leaves |0, 0〉 unchanged.

(b) Show that Alice and Bob, by applying e−iη[S(A)
x +S(B)

x ]/� (which leaves |0, 0〉 un-
changed), can transform the state

cos θ[| ↑↑〉 + | ↓↓〉]/
√

2 + i sin θ[| ↑↓〉 + | ↓↑〉]/
√

2

into the triplet state |2, 0〉 if η = −θ or the state [| ↑↑〉 + | ↓↓〉]/√2 if η = π/2 − θ.
(By orthogonality, the last eigenstate must be [| ↑↑〉 − | ↓↓〉]/√2.)
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14.9 (a) Consider an “exchange” measurement which instantaneously (and locally) ex-
changes the spin states of two particles, one of which is treated as a measuring device.
For example, Alice could prepare a “measuring” spin in an initial state | ↑〉d and her
own particle’s spin in an initial state |ψ〉A; an exchange measurement would transform
the initial state |ψ〉A⊗| ↑〉d into | ↑〉A⊗|ψ〉d. Show that the transformation is unitary.
(b) Consider a second such “exchange” measurement, which Bob could apply to the
spin state of his particle. Together, the two exchange measurements would instan-
taneously transfer an arbitrary spin state |Ψαβ〉 of Alice’s and Bob’s particles to the
“measuring” particles. Then the “measuring particles”, when reunited, would allow a
verification of the state |Ψαβ〉. Would this state-specific (state-verification) measure-
ment violate relativistic causality? Explain.

14.10 Show that the two state-verification procedures in Fig. 14.8 disturb one another, so
that neither verifies the singlet state |0, 0〉. Why does the event a not disturb the state
verification of Alex and Barb?
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15 How to Observe a Quantum Wave

In 1926, Schrödinger postulated “material waves” in an analogy with light waves. Rays of
light – which obey the principle of least time – are an approximation to light waves. In
Schrödinger’s analogy, paths of material objects – which obey the principle of least action
– are an approximation to material waves. The paths of material objects are as fictitious as
rays of light, while material waves are as real (and as measurable) as light waves [1]. But
within months, Born had discarded “the physical pictures of Schrödinger, which aim at a
revitalization of the classical continuum theory” [2], and given the “material wave” Ψ(x, t)
a new interpretation: |Ψ(x, t)|2 is the probability density to find a particle at x at time t.
Born’s interpretation suggests that for a single object, Ψ(x, t) is not measurable – to measure
a probability density, we need to prepare Ψ(x, t) many times.

We claim, throughout this book, that nonrelativistic quantum mechanics corresponds com-
pletely with experiment (whenever we can treat the speed of light as infinite). If so, what
corresponds to the quantum wave? That is, what corresponds to “the wave function of a single
electron” if no experiment on a single electron can measure Ψ(x, t) (or even |Ψ(x, t)|2)? Our
answer to this question would have surprised both Schrödinger and Born: experiments can
measure the wave function of a single electron! This chapter explains how (and in what sense)
“protective” measurements on a single electron yield both the norm and the relative phase
of Ψ(x, t).

Protective measurements belong to, and extend, nonrelativistic quantum mechanics. Are
they consistent with relativistic causality? Two paradoxes in Sect. 15.1 hint that, in general,
quantum measurements are not consistent with relativistic causality. And in particular, how can
a measurement of Ψ(x, t) – an extended object that collapses instantaneously – be consistent
with relativistic causality? (See Sect. 14.1.)

15.1 Dipole Paradox

Einstein, in his debate with Bohr, used a version of the two-slit interference experiment to
argue that quantum mechanics is inconsistent. Bohr pointed out a flaw in Einstein’s argument.
(See Sect. 2.4.) A more sophisticated version of Einstein’s argument, in Sect. 4.1, is flawed, as
well; but let us now try a still more sophisticated version. Figure 15.1 shows the experiment.
Electrons in an eigenstate of momentum pass through a screen with two slits and strike a row of
detectors, which record an interference pattern. There is at most one electron in the apparatus
at a time – the time of flight t0 of an electron through the apparatus is much less than the time T
between successive clicks of the detectors. Standing a distance L > ct0/2 from the apparatus

Quantum Paradoxes: Quantum Theory for the Perplexed. Y. Aharonov and D. Rohrlich
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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L

D

Figure 15.1: An apparatus, located at D, in which electrons pass one at a time through a two-slit
interference experiment; and Prof. Nu’s device, located at ν, for measuring electric field strength.

is a physicist, Prof. Nu, with a device for measuring electric field strength. Nu stands closer
to the right slit than to the left slit. Thus her measuring device detects a stronger electric field
if the electron passes through the right slit than if it passes through the left slit, and she can
check through which slit the electron passes.

In the other versions of the two-slit interference experiment, attempts to check which way
the electrons go spoil the interference pattern. But Nu’s measurements of the electric field
cannot spoil the interference pattern. Consider one such measurement: At time t = 0, an
electron reaches the two slits. To find out through which slit the electron passes, Nu measures
the electric field at time t = L/c; she must wait that long for the field of the electron passing
through the apparatus to reach her. Does Nu’s measurement of the electric field affect the
electron? Whatever Nu does at time t = L/c cannot affect the electron before the time
t = 2L/c, according to relativistic causality. But by the time t = 2L/c > t0, the electron has
already reached the row of detectors and made one of them click, so Nu’s measurement cannot
possibly affect the detection of the electron.

We have treated Nu’s measurement as a single spacetime event. Can we? The answer
depends on her measuring device. If her measuring device is a large, charged sphere, as in
Sect. 8.4, then we cannot: the field of the sphere might affect the two-slit apparatus long before
the electron passes through it. But suppose her measuring device is a collapsible dipole – two
equal and opposite charges that separate to form a dipole and then rejoin. At time t = L/c,
Nu opens the dipole, measures the electric field via its effect on each charge, and closes the
dipole. Except for a short time around t = L/c, the measuring device is electrically neutral
and cannot affect the electron passing through the apparatus.

At time t = T , another electron passes through the apparatus. We can choose T large
enough such that any fields due to Nu’s first measurement have dissipated. Once again, Nu
checks through which slit the electron passes, with no effect on the electron before its detection.
A third electron passes through at t = 2T , a fourth at t = 3T , and so on. After many electrons,
the detectors show a diffraction pattern. Yet Nu can tell us through which slit each electron
went, can’t she? Nu? Relativistic causality allows Nu to violate Bohr’s complementarity
principle.

Here is a related paradox, in which Prof. Nu violates Heisenberg’s uncertainty relations. At
time t = 0, a particle with charge Q is located somewhere inside Prof. Nu’s large laboratory.
Her students have just made very accurate measurements of the particle’s momentum, but all
they know about its position is that the particle is still somewhere in the laboratory. Nu herself



15.2 How not to Observe a Quantum Wave 213

is standing a distance L from the laboratory, where she measures the local electric field by
opening a dipole for a short time around t = L/c. From this measurement she infers the
particle’s position at t = 0. At time t = L/c she also receives a report from her students
regarding the particle’s momentum at t = 0. Nu’s position measurement can have no effect on
the particle until time t = 2L/c. Thus, during the time interval L/c < t < 2L/c, Nu knows
the position and momentum of the particle more accurately than the uncertainty relations allow.

How do we resolve these paradoxes? We may wonder whether we have treated the electric
field correctly. Is it a classical or a quantum field? We have to ask, because it is inconsistent to
couple a quantum particle to a classical electromagnetic field. An electron passing through the
apparatus generates an electric field. If this electric field is classical, it cannot be in a quantum
superposition. But the electron passing the two slits is in a quantum superposition – it has a
nonzero amplitude to pass through each slit. If the electric field coupled to the electron were
classical, it would instantly collapse the quantum superposition of the electron, and there could
be no interference pattern. So the electric field, too, must be in a quantum superposition. It
must be a quantum field. (See Sect. 8.4.) This argument applies to any field coupled to the
electron, including the gravitational field [3]. But does a quantum electric field help us resolve
the paradoxes?

15.2 How not to Observe a Quantum Wave

Born’s probability interpretation of Ψ(x, t) suggests that Ψ(x, t) is measurable only if we
prepare it many times. We do not know that Ψ(x, t) is measurable only if we prepare it many
times; we only know that if we do prepare it many times, we can measure |Ψ(x, t)|2. However,
there are at least four good arguments why Ψ(x, t) is not measurable if we prepare it only once.
Let us review them.

The first argument comes from experience. Born’s interpretation fits what experiments
show us. Cathode rays leave tracks of tiny water droplets as they cross a Wilson cloud chamber –
straight tracks or (in the presence of magnetic fields) curved tracks. As Schrödinger [4] himself
put it many years later, “We cannot but interpret them as traces of the paths of single electrons”.
And although the quantum wave of an electron spreads out in space, we never see the electron
itself spread out in space; we never detect it in two or more places simultaneously.

Unitarity provides a second argument. Imagine a device that couples to a single electron
wave function Ψ(x, t) and, let us assume, measures |Ψ(x, t)|2. The device need not measure
|Ψ(x, t)|2 all over spacetime; let us assume only that it measures the wave function at x = 0,
t = 0. Suppose the device has a pointer that, at the beginning of the experiment, points to the
value 0 on a dial; at the end of the measurement, it points to the value |Ψ(0, 0)|2. If the wave
function of the electron is Ψ1(x, t), the pointer points to |Ψ1(0, 0)|2, while if the wave function
of the electron is Ψ2(x, t), the pointer points to |Ψ2(0, 0)|2. Now, these two states of the pointer
are orthogonal, but the wave functions Ψ1(x, t) and Ψ2(x, t) need not be orthogonal; and if
they are not orthogonal, the device violates unitarity – it transforms nonorthogonal states into
orthogonal states.

Indeed, linearity alone provides an argument. Suppose the device interacts with an electron
in a superposition [Ψ1(x, t) + Ψ2(x, t)] /

√
2. Linear time evolution would evolve the pointer

to a superposition of pointing to |Ψ1(0, 0)|2 and to |Ψ2(0, 0)|2. But if the quantum wave is
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measurable, the pointer should not be in a superposition at the end of the measurement; it
should point to the value

1
2
|Ψ1(0, 0) + Ψ2(0, 0)|2 ,

which is the probability density of the superposition [Ψ1(x, t) + Ψ2(x, t)] /
√

2 at x = 0,
t = 0. Thus, by assuming that an arbitrary quantum wave is measurable, we contradict the
linearity of quantum evolution.

The fourth argument comes from relativistic causality (and the paradoxes of Sect. 14.1).
Consider a quantum wave that extends over a macroscopic domain. For example, let our friends
Alice and Bob each have a box, and let them come together to prepare an electron in a quantum
superposition [ΨA(x, t) + ΨB(x, t)] /

√
2; here ΨA(x, t) is a normalized state with support

only in Alice’s box, and ΨB(x, t) is a normalized state with support only in Bob’s box. Alice
and Bob then go off in opposite directions, with their boxes, to a very great distance. Alice also
takes with her a device for measuring the quantum wave, while Bob takes with him a Geiger
counter. At time t = 0, Alice (at x = 0) measures the quantum wave (or the corresponding
probability density) inside her box. Just before t = 0 (in some reference frame) Bob may
switch on the Geiger counter and look for the electron in his box, or he may do nothing. If he
does nothing, Alice’s measurement will yield the value |ΨA(0, 0)|2/2. But if Bob chooses to
switch on the counter, he may find the electron in his box, and then Alice’s measurement will
yield a zero result; or he may not find the electron in his box, and then Alice’s measurement
will yield the result |ΨA(0, 0)|2 (assuming perfect efficiency for the Geiger counter). Either
way, Bob can send a message to Alice – and violate relativistic causality – by choosing whether
or not to look for the electron.

With such weighty arguments – unitarity, linearity, relativistic causality and decades of
experience – to show that Ψ(x, t) is not measurable, it would seem a waste of time to try to
show that it is. But that is what we do next. Only afterward – after showing that Ψ(x, t) is
measurable – do we look for loopholes in these four arguments.

15.3 Protective Measurements

Section 7.2 sets out the paradigm for a quantum measurement. We postulate a measurement
interaction

Hint(t) = g(t)AsPd ,

in which As is the measured observable; Pd is canonically conjugate to an observable Qd
representing the pointer position on the measuring device. The coupling g(t) is different from
zero only for times 0 ≤ t ≤ T and normalized according to

∫ T

0
g(t) dt = g0 .

Thus, the whole measurement lasts no longer than T . Often, it is convenient to take the
impulsive limit T → 0. But let us consider the opposite limit, in which T is very large, and
g(t) is always near 0, changing slowly. What does the measurement yield in this limit?
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Suppose that Hs (the Hamiltonian of the system when it is not measured) has discrete and
nondegenerate energy eigenvalues Ei, and the system is in one of the corresponding energy
eigenstates |Ψi〉. If |Ψi〉 is in an eigenstate of As, the measurement (however long it takes)
yields the corresponding eigenvalue ofAs. If |Ψi〉 is not an eigenstate ofAs, let us treatHint(t)
as a perturbation g0AsPd/T , lasting a time T , onHs. To first order [5] in 1/T , the state of the
system remains |Ψi〉; the corresponding eigenvalue of Hs +Hint is Ei + 〈Ψi|Hint|Ψi〉. The
shift in the energy is 〈Ψi|Hint|Ψi〉 and equals g0Pd/T times the expectation value 〈Ψi|As|Ψi〉.
So the pointer on the measuring device shifts by g0〈Ψi|As|Ψi〉 during the measurement – a
measurement on a single system can yield an expectation value!

Can it? Let us apply the adiabatic theorem to the measurement. The combination Hs +
Hint(t) is the slowly changing Hamiltonian of the system; it depends on time only through the
small coupling g(t). Applying the formalism of Sect. 12.2, we obtain an effective Hamiltonian
Heff for the pointer of the measuring device:

Heff = Hs + g(t)Pd
∑
i

ΠiAsΠi ,

where Πi = |Ψi〉〈Ψi| projects onto |Ψi〉. (For simplicity, we take the Hamiltonian Hd of the
measuring device to vanish when there is no measurement.) The equation of motion for Qd is

d

dt
Qd = g(t)

∑
i

ΠiAsΠi ,

which we integrate to obtain

Qd(T ) −Qd(0) = g0
∑
i

ΠiAsΠi .

If the system is in the i-th energy eigenstate, the change in the pointer reading is g0 times the
expectation value 〈Ψi|As|Ψi〉. Thus we can measure the expectation value of As on a single
system.

We call such a measurement [6] protective because it protects the quantum wave Ψi(x)
from the measurement. Non-adiabatic measurements ofAs cause the measured system to jump
to an eigenstate ofAs; but here, in the adiabatic limit, the system does not jump. As long as the
measurement interaction is weak enough, the system remains in the same energy eigenstate.

Before, we knew how to measure an expectation value 〈Ψ|As|Ψ〉 only by preparing the
quantum state |Ψ〉 many times and measuring As each time. We assumed that we could not
prepare |Ψ〉 once and measure 〈Ψ|As|Ψ〉, just as we assumed that we cannot prepare |Ψi〉 once
and measure |Ψi(0)|2. But if we can prepare |Ψ〉 once and measure 〈Ψ|As|Ψ〉, perhaps we
can also measure |Ψi(0)|2, for |Ψi(0)|2 is itself an expectation value – the expectation value of
δ(x). That is, we can measure the average value of |Ψi(x)|2 in an arbitrary neighborhood as
an expectation value. For example, we can measure the value of |Ψi(x0)|2 as the expectation
value of ρD(x − x0), where ρD(x − x0) is

ρD(x − x0) =
e−|x−x0|2/D2

π3/2D3
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andD is arbitrary. The distribution ρD(x−x0) approaches δ(x−x0) asD → 0. (AsD → 0,
the interactionHint(t) grows stronger, so the duration T of the measurement must also grow.)

We can generalize the measurement of Ψi(x) in several ways. We are not limited to
measuring Ψi(x) in the neighborhood of one point. A measurement interaction with several
terms,

g(t)
∑
i

ρD(x − xi)P
(i)
d ,

allows us to measure the value of |Ψi(x)|2 at several points xi simultaneously. Again, the
duration of the measurement must grow but, given enough time, we can map the quantum
wave as completely and as precisely as we wish.1 We can also measure the average current
density in a neighborhood of a point x0 by a protective measurement of an operator JD(x0):

JD(x0) =
�

2im
[ρD(x − x0)∇ + ∇ρD(x − x0)] . (15.1)

A measurement of this operator yields the probability current Ji(x),

Ji(x) =
�

2im
[Ψ∗
i (x)∇Ψi(x) − Ψi(x)∇Ψ∗

i (x)] , (15.2)

averaged over the distribution ρD(x − x0). In the notation of Sect. 4.2, a quantum wave
comprises a modulus n(x, t) and a phase ϕ(x, t),

Ψ(x, t) = n(x, t)eiϕ(x,t) ;

a stationary state depends on t only through a global phase, so n = |Ψi(x)| and ∇ϕ =
mJi(x)/|Ψi(x)|2. Thus by measuring the expectation values of |Ψi(x)|2 and Ji(x), we can
obtain ∇ϕ and reconstruct the relative phase ϕ as precisely as we wish.

A Hamiltonian Hs with a discrete, nondegenerate spectrum naturally protects its eigen-
states during a measurement; but even without such a Hamiltonian, we can protect an arbitrary
quantum wave Ψ(x, t). Chapter 12 shows that both the adiabatic limit and the limit of contin-
uous measurement suppress quantum jumps. Thus, we can protect Ψ(x, t) by continuous (i.e.
dense) measurements of any operator that, at time t, has |Ψ(t)〉 as a nondegenerate eigenstate
with an isolated eigenvalue, e.g. the projection operator |Ψ(t)〉〈Ψ(t)|. With continuous mea-
surement we can obtain an arbitrary evolution of the quantum wave, including the evolution
that Ψ(x, t) would have had in the absence of any measurement.

15.4 Galilean Dialogue

[Salviati, Sagredo and Simplicio are visiting Ma’alot-Tarshiha.]
SAGREDO. These protective measurements are a great revelation to me; yet, when I try

to grasp the revelation, it slips through my fingers like sand. I want to perform a protective

1Instead of increasing the duration of the measurement, we can increase the gap between the energy of |Ψi〉 and
other eigenvalues ofHs. Indeed, the larger we make the gap, the more we can speed up a protective measurement; in
principle, there is no maximum size for the gap, hence no minimum time for a protective measurement.
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measurement on an unknown quantum wave Ψi(x). But in fact, I cannot perform this protective
measurement, because I cannot protect Ψi(x). To protect Ψi(x) I must know that Ψi(x) is an
eigenstate of a Hamiltonian Hs, that the corresponding eigenvalue is nondegenerate, and that
a sufficiently large gap separates it from other eigenvalues of Hs. Then I can protect Ψi(x)
with an adiabatic measurement. But if I know all these things, I can just as well measure the
observable Hs and identify Ψi(x) from its eigenvalue. I could then calculate the modulus and
phase of Ψi(x), and even calculate 〈Ψi|As|Ψi〉 for any operator As. Why do we gain from
protective measurements?

SALVIATI. I appreciate your question, Sagredo; it’s a question that I asked myself, as well.
Let me point out that you can, in a sense, perform a protective measurement on an unknown
quantum wave. For example, you could leave the protection to me. If I know the Hamiltonian
Hs, I can protect Ψi(x). You can then measure the modulus and phase of Ψi(x) without even
knowing that Ψi(x) is an energy eigenstate. I only have to tell you how adiabatic to make
your measurement. Think about this example, and you will agree with me that protective
measurements are unlike any familiar measurements.

SAGR. I don’t doubt that protective measurements are unlike any familiar measurements.
But I doubt that we need them. In your example, you and I play a measurement game. But to me,
measurement is a game that we physicists play with Nature. What do protective measurements
tell us about Nature?

SALV. Well, I see your point. And I can answer your question: Protective measurements
allow us to test, for the first time, whether the quantum wave Ψi(x) and the “expectation value”
〈Ψi|As|Ψi〉 describe a single system in the state |Ψi〉, or only an ensemble of systems in the
state |Ψi〉. Consider a single particle in a square well trapped in, say, the ground state |Ψ0〉.
If we look for the particle in the left half of the box, we either find it or we don’t. We never
obtain 1/2, which is the expectation value of the operator ΠL that projects onto the left half of
the box. Only by measuring ΠL many times on the state |Ψ0〉 and averaging do we approach
1/2. By contrast, a single protective measurement of ΠL on a particle prepared once in the
state |Ψ0〉 yields 〈Ψ0|ΠL|Ψ0〉 = 1/2.

Nature protects, too. Consider a system in its ground state |Ψ0〉. If the ground state energy
is nondegenerate and discrete, then |Ψ0〉 is naturally protected. Anything in the system’s
environment that couples to an observable As of the system measures, in effect, 〈Ψ0|As|Ψ0〉.

SAGR. Your answer convinces me.
SIMPLICIO. But not me! Salviati, you say that by measuring ΠL many times on the state

|Ψ0〉 and averaging, we obtain the expectation value 〈Ψ0|ΠL|Ψ0〉. My intuition is hopelessly
classical, but isn’t a protective measurement of ΠL equivalent to a repeated measurement of
ΠL on the state |Ψ0〉? The adiabatic limit keeps the particle in the ground state, while the device
measuring ΠL obtains 0 at some times, 1 at other times; what it ultimately, and automatically,
registers is the time average of ΠL, i.e. the expectation value of ΠL.

SALV. In quantum mechanics, a measurement of ΠL cannot yield 0 or 1 and still leave the
particle in the state |Ψ0〉.

Now, you could assume a theory of hidden variables But let me show you how strange such
a theory would be. Let us prepare the particle, not in |Ψ0〉, but in the first excited state |Ψ1〉.
As you know, |Ψ1〉 has a node in the middle of the box, and the probability density vanishes
there. Since the probability density does not vanish on either side of the node, the particle must
spend time on both sides of the node; in fact, it must always be crossing the node to spend
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time on the other side. However, the probability density vanishes at the node, so the particle
would have to travel with infinite speed at the node, in order to cross from one side of the box
to the other without spending time there. If the particle is an electron, it would radiate as it
accelerated near the node. Yet the potential is flat; no force acts on the particle.

SAGR. That is strange, I agree.
SIMP. And so do I; but I would still prefer a measurement allowing me to observe a

completely unknown quantum wave. Indeed, using your method I think I can design such a
measurement. I can probe the energy levels of an unknown system spectroscopically. Once I
know its energy levels, I can design a protective measurement on it, even if I do not know its
Hamiltonian. And if the system is a particle with a Hamiltonian of the form Hs = p2/2m +
V (x), I can reconstruct V (x) from protective measurements of its charge distribution.

SALV. Such a measurement is indeed possible, Simplicio. But it would not allow us to
observe every unknown quantum wave. Alas, unitarity does not allow us to observe an arbitrary
unknown quantum wave.

15.5 Protective Measurements and Causality

Now we have some explaining to do. How do protective measurements get around the four
arguments of Sect. 15.2? What is wrong with the arguments?

The argument from experience merely shows the limitations of our experience. We must
broaden our experience! By protecting the state of the measured system, protective measure-
ments succeed where other measurements fail.

The second argument – from unitarity – is correct as far as it goes. (Salviati refers to it
at the end of the last section.) But it does not prevent us from distinguishing a state |Ψi〉
from states orthogonal to |Ψi〉. Any form of protection selects a set of orthogonal states. A
nondegenerate Hamiltonian selects its own (orthogonal) eigenstates; continuous observation
of a nondegenerate observable selects the (orthogonal) eigenstates of the observable. If the
selected states are |Ψn〉, a protective measurement must find the system in one of the states
|Ψn〉, hence it only distinguishes the state of the system from orthogonal states.

But if we can protect any one of the states |Ψn〉, why can’t we protect a superposition of
the states |Ψn〉? Let us prepare a system in a superposition |Ψαβ〉 of orthogonal states:

|Ψαβ〉 = α|Ψ1〉 + β|Ψ2〉 ,
with |α|2 + |β|2 = 1. Why can’t we protect |Ψαβ〉? A measurement that protects |Ψ1〉 and
|Ψ2〉 cannot change |α| and |β| (because it suppresses quantum jumps). However, a protective
measurement on the system leaves the measuring device entangled with the measured system.
Let Φ(Qd, 0) denote the initial wave function of the measuring device, and let Φ(Qd, 0) be
peaked at Qd = 0. The combined initial wave function is Ψαβ(x, 0)Φ(Qd, 0), which evolves
to

αΨ1(x, T )Φ (Qd − g0〈Ψ1|As|Ψ1〉, T )
+ βΨ2(x, T )Φ (Qd − g0〈Ψ2|As|Ψ2〉, T ) (15.3)

over time T . Each of the states |Ψ1〉 and |Ψ2〉 is protected, but there is nothing that protects the
entangled state of the measured system and the measuring device, and it collapses. The measur-
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ing device does not remain in a macroscopic superposition but points to Qd = g0〈Ψ1|As|Ψ1〉
with probability |α|2, or to Qd = g0〈Ψ2|As|Ψ2〉 with probability |β|2.

The third argument – from linearity – is correct as far as it goes, too. The evolution of
Ψαβ(x, 0)Φ(Qd, 0) is indeed linear, yielding the superposition in Eq. (15.3). Thus the measur-
ing device points either to g0〈Ψ1|As|Ψ1〉 or to g0〈Ψ2|As|Ψ2〉 at the end of the measurement.
It does not point to g0〈Ψαβ |As|Ψαβ〉 and we do not expect it to point to g0〈Ψαβ |As|Ψαβ〉;
the quantum wave Ψαβ(x, t) is not protected, so we cannot measure it.

The fourth argument invokes relativistic causality. If Alice and Bob can protect the state
[|ΨA〉 + |ΨB〉] /√2, then Bob can instantly change the result of Alice’s measurement. How-
ever, the normalized wave functions ΨA(x, t) and ΨB(x, t) are disjoint, by assumption. If
the Hamiltonian Hs of their shared electron is local, then 〈ΨA|Hs|ΨB〉 vanishes. It follows
that [|ΨA〉 + |ΨB〉] /√2 is degenerate with [|ΨA〉 − |ΨB〉] /√2, and the Hamiltonian of the
electron does not protect the state [|ΨA〉 + |ΨB〉] /√2. Alice and Bob must protect their state
some other way. But the other ways involve explicitly nonlocal interactions. For example, Al-
ice and Bob can remove the degeneracy between [|ΨA〉 + |ΨB〉] /√2 and [|ΨA〉 − |ΨB〉] /√2
by introducing an interaction between |ΨA〉 and |ΨB〉 in Hs. But such a nonlocal interaction
violates relativistic causality.

Here is a related, and subtler, argument. For simplicity, we confine the electron to the x-
axis. Alice’s box is a one-dimensional potential well, and we assume that outside the box the
potential vanishes, but the electron wave function does not. Alice prepares the electron in the
ground state |Ψ0〉 of the well, with energy −E. She measures |Ψ0(0)|2, the expectation value
of |Ψ0(x)|2 in the center of the well, and finds a nonzero value. If she repeats the measurement,
she finds the same value. Now suppose that Bob decides to look for the electron a distance L
along the x-axis from the potential well. It is very unlikely that Bob will find the electron, for
the probability density |Ψ0(L)|2 is exponentially small; we have

|Ψ0(L)|2 ≈ 1
�
(2mE)1/2e−2L(2mE)1/2/� , (15.4)

where m is the mass of the electron. But |Ψ0(L)|2 is not zero, so Bob might find the electron.
If he does, Alice will obtain zero for her measurement of |Ψ0(0)|2. Thus Bill can send a
superluminal message to Alice. Bob has only a small chance of transmitting the message, but
Alice and Bob can improve the chance of transmission by preparing an ensemble of electrons
in the state |Ψ0〉.

This thought experiment is a paradox if the duration T of Alice’s protective measurement
is smaller than the time it takes for a light signal to reach her from Bob, i.e. if we assume
T < L/c. But we applied the Born–Oppenheimer approximation in our treatment of protective
measurements; we have taken large T for granted. What does the upper bound T < L/c
do to protective measurements? If T is too short, the protective measurement may not be
adiabatic; then Alice’s measurement may kick the electron out of the well. That is, she
may obtain |Ψ0(0)|2 = 0 not because Bob found the electron but because her measurement
was not adiabatic, and excited the electron to a state with positive energy. So we ask, what
is the minimum probability that Alice’s measurement kicks the particle out of well, if the
measurement lasts a time T < L/c? If this probability is larger than the probability of Bob’s
finding the particle a distance L from the well, we have no paradox; Alice cannot conclude
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that Bob is sending her a message when her measurement of |Ψ0(0)|2 yields zero. It is more
likely that the measurement itself kicked the particle out of the well.

What is the minimum probability that a measurement lasting a time T will cause a quan-
tum jump in energy of at least E? Let us try to estimate the minimum probability. (See also
Probs. 15.4–5.) It is sufficient to consider a system with two nondegenerate energy eigen-
states; additional states could only increase the probability of a transition. Hence we assume
a measurement interaction of the form

Hint = g(t)AsPd ,

where As is a 2-by-2 matrix. If g(t) is an analytic function of t there are general methods to
calculate the probability of a transition, and a few exact results [7]. Here g(t) cannot be an
analytic function, because an analytic function of t cannot vanish over any interval in t, and
Hint is nonzero for a time interval not longer than T . However, if g(t) is analytic and changes
gradually enough, Hint is less likely to induce quantum jumps than if g(t) has finite support.
Suppose the coupling is

g(t) =
g0
T

sech
πt

T
, (15.5)

which is exponentially small except during a period of time of order T , and normalized ac-
cording to

∫ ∞

−∞
g(t) dt = g0 .

(See Fig. 15.2.) Let Hs = Eσz/2 be the unperturbed Hamiltonian of the model, with
eigenstates | ↑〉 and | ↓〉, and let Hint = g(t)σxPd. At time t = −∞ the combined state of
the measured system and the measuring device is | ↓〉 ⊗ |Φd〉 = | ↓,Φd〉, where Φd(Qd) is the
wave function of the pointer position Qd. The probability of a transition is

Pjump = |〈↑ |e−i ∫ ∞
−∞ dt[Hs+Hint(t)]/�| ↓,Φd〉|2 .

We apply the exact calculation of N. Rosen and C. Zener [8], who assumed the coupling of
Eq. (15.5), to obtain

Pjump = 〈Φd| sin2(g0Pd/�)sech2(ET/2�)|Φd〉 .
The state |Φd〉 is not an eigenstate of Pd; but the exponential factor in Pjump does not depend
on the expectation value of sin2(g0Pd/�); we have

Pjump ≈ e−ET/� (15.6)

as an estimate of the minimum probability of a transition due to Alice’s protective measure-
ment.2

2Although the probability of | ↑〉 in the final state is exponentially small, at intermediate times the coefficient of
| ↑〉 in the state of the measured system may not be exponentially small. (See Prob. 15.8.) Yet at time T the coefficient
is exponentially small and Alice’s measuring device is not entangled with the measured system.
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Figure 15.2: The coupling g(t) of Eq. (15.5).

Now we compare the exponents in Eqs. (15.4) and (15.6). The probability that Alice’s
measurement kicks the electron out of the well, assuming that her measurement is as adiabatic
as possible in the time T , is of order e−ET/�. For a paradox, this probability must be smaller
than the probability that Bob finds the electron a distance L from the well, i.e.

e−ET/� < e−2L(2mE)1/2/� ,

or

ET > 2L(2mE)1/2 . (15.7)

To satisfy these inequalities, we need only choose E large enough, for given T , L and m. A
paradox, indeed!

We know that the Schrödinger equation allows arbitrary speeds; we cannot impose rel-
ativistic causality on nonrelativistic quantum mechanics. But this paradox does not involve
superluminal speeds, or any speeds; like Bell’s inequality, it involves only measurements at
spacelike separations. Why isn’t it consistent with relativistic causality?

Let us consider how large E has to be for the paradox to arise. Squaring both sides of
Eq. (15.7), we have ET 2 > 8L2m > 8c2T 2m or E > 8mc2. We conclude that Bob can send
Alice a superluminal signal if the binding energy of Alice’s electron is several times mc2.

The paradox, then, has a remarkable resolution. The quantum mechanics of a single particle
in an arbitrary potential is inconsistent with the constraint of relativistic causality. Bob can send
Alice a superluminal signal, unless we impose a (quite artificial) limit on the depth of Alice’s
potential well. But in relativistic quantum theory, particles multiply; a potential step greater
than 2mc2 creates electron-positron pairs (as Klein’s paradox [9] demonstrates). A potential
step of E > 2mc2 in Alice’s well would create electron-positron pairs, and these would
influence Alice’s measurement much more than Bob’s Geiger counter. Since, in relativistic
quantum theory, Alice cannot bind a lone electron with a binding energy greater than 2mc2,
Bob cannot send Alice a superluminal signal [10]. Indeed, this paradox belongs to the class of
contradictions (or would if it had preceded the development of quantum field theory): it shows
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that quantum mechanics with arbitrary potentials and fixed particle number is incompatible
with relativistic causality. Only a new theory can resolve the paradox.

15.6 Towards Quantum Field Theory

For Schrödinger, Ψ(x, t) was a classical wave, analogous to a classical light wave. But for
us, Ψ(x, t) is a quantum wave, and the analogy with classical light is not so relevant. More
relevant is the analogy between Ψ(x, t) and quantum light. Like Ψ(x, t), quantum light waves
are measurable. The quantum wave Ψ(x, t) describes a particle, and a quantum light wave
describes particles – photons.

A flaw in the analogy is that Ψ(x, t) corresponds to only one particle, while a quantum
light wave corresponds, in general, to many. But as the previous section indicates, this flaw
disappears when Ψ(x, t) goes relativistic. Relativistic quantum theory is a many-particle
theory. A nonrelativistic quantum wave can describe one particle; a relativistic quantum wave
must describe many particles. Nonrelativistic quantum mechanics is self-consistent, but it
is inconsistent with relativistic causality, because protective measurements – unlike quantum
correlations, and unlike modular variables – allow Bob to send a superluminal signal to Alice.
(See Chaps. 5–6.) But relativistic quantum theory must be consistent with relativistic causality;
it cannot allow superluminal signalling. As the last section shows, there are two ways to prevent
superluminal signalling: we can forbid any potential step that is several times mc2, or we can
allow the creation of particle-antiparticle pairs from the vacuum. There is no natural way to
forbid deep potential wells; it would be unrealistic to forbid them. Thus, we must allow pair
creation – which takes us to relativistic quantum field theory.

Problems

15.1 Do quantum fluctuations of the electromagnetic field resolve the paradoxes of Sect. 15.1?
“No!” answers Simplicio. “Prof. Nu can indeed determine the position of a particle of
charge Q by measuring its electric field. Although quantum fluctuations of the electric
field reduce the precision of her field measurement, they are independent ofQ. The larger
Q, the larger the electric field that Prof. Nu measures, and the smaller the uncertainty
in her determination of the position of the particle.” What is wrong with Simplicio’s
answer?

∗15.2 Apply Prob. 8.14 to resolve the paradox of Sect. 15.1. Assume that Prof. Nu measures
the position of an electron via the impulse that its Coulomb field imparts to a test charge
(either of the two charges in Nu’s dipole) when the dipole is open, and calculate the
influence of vacuum fluctuations of the electric field on the momentum of the electron
and on its position as measured via the test charge.

15.3 Equations (15.1–2) define JD(x0) and Ji(x). Compute the expectation value of JD(x0)
in the state Ψ(x) and show that it equals

∫
J(x)ρD(x − x0)d3x.

15.4 Consider a HamiltonianHint = g(t)AsPd as a perturbation on a system prepared in its
ground state.
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(a) Assume g(t) = 2T/(T 2+4π2t2) and show that, to first order inHint, the probability
of a transition to an excited state with energy E above the ground state is proportional
to e−2ET/h.
(b) Assume g(t) = 1/T for 0 < t < T and g(t) = 0 at other times; show that the
transition probability is proportional to sin2(ET/2�)/E2T 2.

∗15.5 Let g(t) be zero except for 0 ≤ t ≤ T , with
∫ T
0 |g(t)|dt finite and

∫ T
0 g(t)dt = 1.

Define G(E) to be the Fourier transform of g(t):

G(E) = (2π�)−1/2
∫ T

0
g(t)e−iEt/�dt ,

where E is real. Assume that there is an ε > 0 such that

|G(E)| ≤ e−ε|E| (15.8)

for all |E| sufficiently large. Prove that g(t) extends to an analytic function of complex
t in the upper half-plane �t ≥ 0. But g(t), as defined, cannot be analytic! Hence the
assumption is false; there is no ε > 0 such that Eq. (15.8) holds for all |E| sufficiently
large.

∗15.6 Section 15.5 presents Eq. (15.7) as a necessary and sufficient condition for a violation
of relativistic causality. Sagredo now argues that Eq. (15.7) is not necessary. “Let
Alice prepare particles in the ground state |Ψ0〉 and measure |Ψ0(0)| on each particle
over a time T . Alice’s measurement yields a null result whenever it excites the particle
and, additionally, whenever Bob looks for and finds the particle a distance L away.
Whether or not Eq. (15.7) is satisfied, Bob can increase the probability of a null result
– and thus send Alice a superluminal message – by looking for particles a distance L
away!” However, there is a flaw in Sagredo’s argument. Sagredo states that if Bob
finds the particle, Alice’s measurement yields |Ψ0(0)| = 0. This statement is consistent
with relativistic causality – the particle cannot reach Alice during her measurement if
L > cT . Show, however, that the statement implies that Alice’s measurement yields
|Ψ0(0)| = 0 with the same probability whether or not Bob looks for the particle a
distance L away.

15.7 Let A, with eigenstates |ai〉, be an observable of one system, and let |ψi〉 be states of
another system, for i = 1, . . . , N . Consider a protective measurement of A on the state

|Ψ〉 =
N∑
i=1

ci|ai〉 ⊗ |ψi〉

of the two systems. Show [11] that the measurement yields tr (ρA), where ρ is the
reduced density matrix

ρ =
N∑
i=1

|ci|2|ai〉〈ai| .

Thus a protective measurement on a single system can yield tr (ρA). (See also Prob. 9.6.)
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∗15.8 Consider a Hamiltonian H = cosφσz + sinφσx that changes adiabatically over a long
time T , i.e. dφ/dt is at most of order 1/T . The instantaneous eigenstates of H ,

ψ+ =
(

cos φ2
sin φ

2

)
, ψ− =

(− sin φ
2

cos φ2

)
,

have eigenvalues E+ and E−, respectively. Let ψ(t) be the exact solution of the
Schrödinger equation i�(d/dt)ψ(t) = Hψ(t); we can write ψ(t) as

ψ(t) = α+(t)e−iE+t/�ψ+(t) + α−(t)e−iE−t/�ψ−(t) .

At t = 0, α−(t) vanishes; at t = T , it can be chosen exponentially small in T (i.e.
suppressed by e−εT where ε is a constant). Show, however, that α−(t) cannot be
exponentially small at all intermediate times.
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16 Weak Values

What is the problem with quantum mechanics? The problem is not just that quantum mechanics
contradicts our everyday intuitions. So does the special theory of relativity! But special
relativity offers us new and powerful intuitions about space and time, mass and energy, and
causality. By contrast, quantum mechanics seems to offer only negatives: no determinism, no
complete description, no objective reality. What about the positive in quantum mechanics?
In these last three chapters, we emphasize the positive; and we emphasize that the positive in
quantum mechanics often hides behind the negative.

For example, the word “quantum” entered physics in 1900 as a constraint on classically al-
lowed values of observables. Planck’s quantum postulate constrains the energies of a resonator
to discrete values. And in quantum mechanics, it is axiomatic that the only allowed values of an
observable are its eigenvalues. Yet in many ways, quantum mechanics is freer from constraints
than classical mechanics. Take quantum tunnelling as an example. In classical mechanics, a
particle cannot cross a potential barrier greater than its total energy; it cannot have negative
kinetic energy. In quantum mechanics, it can cross such a barrier. Can it have negative kinetic
energy? The axiomatic answer is “No! The eigenvalues of kinetic energy are all positive!”
(See Prob. 16.1.) But Sect. 16.4 goes beyond this answer to define the weak value of an
observable. The weak value of an observable need not be an eigenvalue; indeed, it need not be
any classically allowed value. Weak values offer intuition about a quantum world that is freer
than we imagined – a world in which particles travel faster than light, carry unbounded spin,
and have negative kinetic energy.

16.1 A Weak Measurement

Here is a thought experiment that seems to disobey the uncertainty relations. It disobeys very,
very infrequently. But even if it disobeys only once, quantum mechanics is inconsistent. So
this thought experiment, like the thought experiments of Sects. 2.4, 4.1 and 15.1, challenges
the consistency of quantum mechanics.

Consider a large number N of spin-1/2 particles in the initial spin state |Ψin〉:

|Ψin〉 = 2−N/2
N⊗
i=1

(| ↑〉i + | ↓〉i) .

Quantum Paradoxes: Quantum Theory for the Perplexed. Y. Aharonov and D. Rohrlich
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Here S(i)
z | ↑〉i = �/2, S(i)

z | ↓〉i = −�/2. Let Sz denote the z-component of total spin:

Sz =
N∑
i=1

S(i)
z .

For a measurement of Sz , we take the interaction Hamiltonian

Hint = g(t)PdSz/
√
N ;

as usual, Pd is conjugate to the positionQd of a pointer, and
∫
dtg(t) = g0. The factor 1/

√
N

weakens the effective coupling to each spin. We assume that the measurement is impulsive; then
the change in Qd during the measurement is g0Sz/

√
N . The uncertainty in this measurement

of Sz is ∆Sz = (
√
N/g0)∆Qd, where ∆Qd is the uncertainty in Qd.

The expectation value of Sz in the state |Ψin〉 vanishes, while the expectation value of S2
z

is N�
2/4. Hence most measured values of Sz are of order

√
N�/2. Such a value may well

be an error, since ∆Sz is itself proportional to
√
N . But suppose a measured value of Sz is

N�/2. Is it an error?
We expect a measurement of Sz to change |Ψin〉, which is not an eigenstate of Sz . How

does |Ψin〉 change? An individual spin state (| ↑〉i + | ↓〉i)/
√

2 evolves to

[e−ig0Pd/2
√
N | ↑〉i + eig0Pd/2

√
N | ↓〉i]/

√
2 .

Hence the probability that the measurement leaves the i-th spin in the initial state (| ↑〉i+
| ↓〉i)/

√
2 is

〈Φd| cos2(g0Pd/2
√
N)|Φd〉 ,

where Φd(Qd) represents the initial wave function of the pointer. The probability that the
measurement leaves all the spins in the initial state |Ψin〉 is 〈Φd| cos2N (g0Pd/2

√
N)|Φd〉,

which approaches 〈Φd|e−g20P 2
d /4|Φd〉 for large N . We can estimate the expectation value of

P 2
d from (∆Pd)2 ≈ �

2/4(∆Qd)2. (The expectation value of Pd vanishes for the stationary
pointer.) Thus for large N , the measurement leaves the initial state |Ψin〉 unchanged with
probability

e−g20�
2/16(∆Qd)2

which can be arbitrarily close to 1.
So it seems that a measurement could yield Sz = N�/2 without changing the initial state

|Ψin〉 at all. But |Ψin〉 is an eigenstate of Sx, not of Sz . Can we know both Sz and Sx at the
same time? How can we explain this measurement?

These formulas apply also to a two-slit interference experiment with N particles. Let
the states | ↑〉i and | ↓〉i represent the i-th particle passing through the left and right slits,
respectively. (See Fig. 16.1.) Then measuring Sz shows the number of particles passing
through the left slit minus the number passing through the right slit. For large enough N , a
measurement of Sz on the state |Ψin〉 could show all the particles passing through the left slit,
with no change in |Ψin〉. But with no change in |Ψin〉, the measurement does not destroy the
interference!
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Figure 16.1: The paradox of Sect. 16.1 formulated as a two-
slit interference experiment. The states | ↑〉i and | ↓〉i repre-
sent the i-th particle passing through the upper and lower slit,
respectively.

16.2 A Paradox of Errors

In this book, measurements are quantum measurements, i.e. we treat measuring devices as
quantum systems. Chapter 7 defines an interaction Hamiltonian for measuring an observable
As:

Hint = g(t)AsPd . (16.1)

It is convenient to take g(t) impulsive and g0 =
∫
g(t)dt = 1. The measuring device is a

quantum system, hence it has a quantum state. But Chaps. 7 and 8, which discuss quantum
measurements in the Heisenberg formalism, do not refer to the state of the measuring device;
and even Chap. 9, which discusses quantum measurements in the Schrödinger formalism, refers
to the state of the measuring device only formally. For example, Eq. (9.3) refers to the initial
state |0〉 of a pointer without further defining |0〉. In this respect, our treatment of quantum
measurements is not yet complete. When we discuss the state of the measuring device, we see
how the model of von Neumann accounts for errors in quantum measurements.

Let us define an initial state Φin(Qd) of the measuring device:

Φin(Qd) = (ε2π)−1/4e−Q2
d/2ε

2
. (16.2)

The width of the peak in Φin(Qd) depends on ε according to ∆Qd = ε/
√

2. Small ε corre-
sponds to small uncertainty in Qd and in As. But it also corresponds to a strong measurement
interaction: since ∆Pd is large, we cannot take the range of Pd in Eq. (16.1) to be small. Con-
versely, large ε corresponds to large uncertainty inQd andAs, and also to a weak measurement
interaction. The limit ε → 0 defines an ideal measurement; in this limit ∆Qd vanishes, and the
change in the pointer position equals an eigenvalue of As with no error. Real measurements,
however, can yield errors; and Φin(Qd) is a source of errors. Note that a quantum measure-
ment ofAs obeying Eqs. (16.1–2) could yield any value, although large errors are exponentially
suppressed. There is no mystery in these errors; since ∆Qd does not vanish, we expect them.
Measurements of a nonnegative observable such as kinetic energy could even yield unphysical
negative values. Of course, the Qd dial could have a pin to prevent the pointer from turning to
negative values, but let us assume it does not. It should not. For even if a measured value of
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As is unphysical, it belongs to a physical distribution of measured values. It helps us estimate
the width and peak value of the distribution, and we should not throw it out.

So just by defining the initial state of the measuring device, we obtain a model for measure-
ment errors. In this model, errors have a natural interpretation: they represent scatter around
the true value of an observable, which can only be an eigenvalue of that observable. They are
due not to the measured system, but to uncertainty in the measuring device. If a measured
system is in an eigenstate of As, then ∆As depends only on ∆Qd, and the model implies (as
it should) that more accurate measurements (smaller ∆Qd) yield fewer errors (smaller ∆As).
Indeed, since ∆As depends only on ∆Qd, errors tell us nothing about the measured system.
For the example of kinetic energy measurements, the model implies that measured values may
be negative, but also that negative values are unphysical – errors due to the uncertainty in Qd.

At the risk of belaboring the obvious, we stress that this interpretation of measurement errors
is natural and consistent. Yet we now present a thought experiment [1] with an incompatible
interpretation. Here is the experiment in brief: We prepare a large number of particles bound in
a potential well, in an eigenstate of energy. Next, we measure the kinetic energy of each particle,
with an accuracy that depends on the measuring device. Finally, we look for particles far from
the potential well. That is, after the kinetic energy measurement is complete, we measure the
positions of all the particles, and select particles found “far enough” from the potential well
– with “far enough” depending on the accuracy of the kinetic energy measurement. We find
very few particles “far enough” from the potential well, but for these particles, we find that the
kinetic energy measurements gave negative values. Even more remarkable is the distribution
of the values: the peak value equals the negative kinetic energy (total energy minus potential
energy) of a bound particle outside its potential well; also, the width of the peak is the expected
width for measurements with this measuring device. So are these values errors?

Here is the thought experiment in detail: The Hamiltonian for a bound particle in one
dimension is

Hs =
p2

2m
+ V (x) . (16.3)

For simplicity, we choose V (x) to be a negative δ-function potential, vanishing for x = 0.
Then Hs has a single bound state,

Ψin(x) =
√
αe−α|x| ,

with eigenvalue −�
2α2/2m. Let Ψin(x) be the initial state of the particle. The initial state of

the measuring device is the gaussian Φin(Qd) of Eq. (16.2), and the interaction Hamiltonian
for the measurement is Hint of Eq. (16.1) with p2/2m for As. (Nonrelativistic quantum
mechanics is consistent with such a nonlocal interaction.) For simplicity, again, we assume that
the measurement is impulsive, so that we can neglect Hs for the duration of the measurement.
Then the combined state of the particle and measuring device evolves from Ψin(x)Φin(Qd)
at the beginning of the measurement to

e−(i/�)Pdp
2/2mΨin(x)Φin(Qd) (16.4)

at the end. At the end of the measurement, we look for the particle far from the origin. Let the
final state of the particle be
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Ψfin(x) = (δ2π)−1/4e−(x−x0)2/2δ2 ,

where δ and x0 satisfy two conditions:

δ > α�
2/mε (16.5)

and

x0 � δ3mε/�2 . (16.6)

In words, for a more accurate (smaller ε) measurement of kinetic energy, the final state of the
particle must be broader (larger δ) and farther from the well (larger x0). (Together, Eqs. (16.5–
6) imply x0 � α3

�
4/m2ε2.) Of course, there is no assurance that we will find the particle

in this final state; on the contrary, the probability is small. But we assume that we can repeat
the experiment as many times as we like, until a sufficient number of particles satisfy these
conditions.

Now for these particles only, we look at the values of kinetic energy that the measuring de-
vice recorded before we checked the final position of each particle. What do the measurements
show? We obtain the final state Φfin(Qd) of the measuring device by projecting Eq. (16.4)
onto Ψfin(x):

Φfin(Qd) = N〈Ψfin|e−(i/�)Pdp
2/2m|Ψin〉Φin(Qd) . (16.7)

HereN is a normalization factor. Equation (16.7) entails an integration over x. Since Ψfin(x)
is localized far from the origin, it is plausible that the operator p in Eq. (16.7) takes the value
−i�α when applied to Ψin(x). If so, the final, normalized state of the measuring device is

Φfin(Qd) = Φin(Qd + α2
�

2/2m) , (16.8)

and represents the measuring device with its pointer shifted to the “unphysical” negative value
−α2

�
2/2m.

To derive Eq. (16.8) rigorously, we express Ψin(x) as a Fourier transform,

Ψin(x) =
∫ ∞

−∞
dp

e−ipx/�

α2�2 + p2

up to a normalization factor, and replace the operator pwith its eigenvalues. The exponential of
−(i/�)Pdp2/2m translatesQd toQd−p2/2m, and after the x-integration Eq. (16.7) becomes

Φfin(Qd) = N ′
∫ ∞

−∞
dp
e−ipx0/�−δ2p2/2�

2

α2�2 + p2 Φin(Qd − p2/2m) , (16.9)

whereN ′ is for normalization. The integrand in Eq. (16.9) has poles at p = ±iα�, and we can
regard the integral as part of a contour integral. (See Fig. 16.2.) The contour includes the line
�p = −p0 with p0 > α�. Then the integral reduces to two terms: a pole term proportional to

Φin(Q+ α2
�

2/2m) ,
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Figure 16.2: The contour for the integrations in
Eqs. (16.9–10).

and a correction, the integral in Eq. (16.9) with p− ip0 replacing p:

�α

π
eαx0−α2δ2/2

∫ ∞

−∞
dp
e−(p−ip0)2δ2/2�

2−i(p−ip0)x0/�

α2�2+(p−ip0)2
Φin

[
Qd−(p−ip0)2/2m

]
.

(16.10)

The absolute value of Eq. (16.10) depends on x0 only through the exponential of (α −
p0/�)x0. The rest of Eq. (16.10) is finite. Then, since α − p0/� is negative, the correction
vanishes in the limit x0 → ∞. The correction is small if x0 and δ satisfy Eqs. (16.5–6). (See
Prob. 16.4.)

So we arrive at a paradox. On the one hand, negative measured values of kinetic energy
arise from uncertainty in the initial position of the pointer, and not from the measured system.
Therefore they are unphysical. On the other hand, the negative measured values of kinetic
energy in our thought experiment are uncannily physical. Does a particle with total energy
−α2

�
2/2m, in a region of vanishing potential energy, have kinetic energy equal to −α2

�
2/2m?

Indeed, kinetic energy measurements of such particles, found far from the potential well that
binds them, yield a distribution peaked at −α2

�
2/2m; and the width of the peak corresponds

to the accuracy of the measuring device. We find this peak for any realistic measurements, i.e.
for any ε greater than zero.

Freud found hidden meaning in slips of the tongue; here, we find hidden meaning in
measurement errors. But now measurement errors have two incompatible interpretations!

16.3 Pre- and Postselected Ensembles

In classical mechanics, the initial state of a closed system determines its final state, and vice
versa. For a complete description of a classical system, we can impose a complete set of
initial or final boundary conditions; complete sets of initial and final conditions would be
either redundant or inconsistent. Not so in quantum mechanics; the initial state of a closed
system does not determine its final state, and we can impose complete initial and final boundary
conditions. The contrast between classical and quantum boundary conditions suggests that,
for the most complete description of a quantum system, we not only can, we must impose
complete sets of initial and final boundary conditions.
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How do we impose final boundary conditions? The same way we impose initial boundary
conditions: we select for them. (See Sect. 10.4.) For example, we impose the initial boundary
condition Sx = �/2 by measuring Sx on spin-1/2 particles and selecting those for which
Sx = �/2. Similarly, we can impose the final boundary condition Sz = �/2 by measuring
Sz on spin-1/2 particles and selecting those for which Sz = �/2. Either way we select,
but for an initial boundary condition we preselect (before other measurements), while for a
final boundary condition we postselect (after other measurements). Together, initial and final
boundary conditions define a pre- and postselected (PPS) ensemble. PPS ensembles arise
naturally in sequences of measurements. Given a sequence of measurements, we define a PPS
ensemble by preselecting a result of the initial measurement and postselecting a result of the
final measurement. Intermediate measurements are measurements on the PPS ensemble.

If these intermediate measurements are ideal – if the measuring devices do not introduce
errors – then we can apply the ABL formula to them. (See Sect. 10.3.) But in any realistic
measurement there is a chance of errors arising from the measuring device. Can we neglect
the chance of errors? If not, we cannot apply the ABL formula. The thought experiment of the
last section is an example of a realistic measurement on a PPS ensemble. Here we encounter
another example, and the next section treats such measurements in general.

The example [2] concerns a PPS ensemble of spin-1/2 particles. The initial boundary
condition Sx = �/2 and final boundary condition (Sz − Sx)/

√
2 = �/2 together define the

ensemble. Suppose we measure Sz on this ensemble. The interaction Hamiltonian for each
particle is Eq. (16.1) with Sz in place of As:

Hint(t) = g(t)SzPd .

We assume, for simplicity, that there are no other terms in the Hamiltonian; then Sz does not
change during the measurement. We define the initial state Φin(Qd) of the measuring device
as in Eq. (16.2). Thus the initial state of one spin-1/2 particle and a measuring device is

1√
2

(| ↑〉 + | ↓〉) Φin(Qd)

and it evolves during the Sz-measurement to

1√
2
e−(i/�)SzPd (| ↑〉 + | ↓〉) Φin(Qd)

= (4ε2π)−1/4
(
| ↑〉e−(Qd−�/2)2/2ε2 + | ↓〉e−(Qd+�/2)2/2ε2

)
. (16.11)

Finally, we postselect the state

1
2
(2 +

√
2)1/2| ↑〉 − 1

2
(2 −

√
2)1/2| ↓〉 ,

which is the eigenstate of (Sz − Sx)/
√

2 with eigenvalue �/2. Projecting Eq. (16.11) onto
this eigenstate, we obtain the (unnormalized) state of the measuring device at the end of the
experiment:

1
2
(2 +

√
2)1/2e−(Qd−�/2)2/2ε2 − 1

2
(2 −

√
2)1/2e−(Qd+�/2)2/2ε2 . (16.12)
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0
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Figure 16.3: Graph of the two gaussian functions in Eq. (16.12), and their difference (peaked at Qd ≈
1.1�), for ε = 4�.

In the limit ε → 0, we find the pointer in a superposition of two readings; with probability
(2 +

√
2)/4, the pointer reads �/2, and with probability (2 − √

2)/4, it reads −�/2. These
probabilities are in accord with the ABL formula. But let us consider large ε. From Eq. (16.12)
we obtain

e−Q2
d/2ε

2
[
1
2
(2 +

√
2)1/2eQd�/2ε2 − 1

2
(2 −

√
2)1/2e−Qd�/2ε2

]

as the state of the measuring device (up to normalization). We expand the exponential terms
in the brackets:

1
2
(2 +

√
2)1/2eQd�/2ε2 − 1

2
(2 −

√
2)1/2e−Qd�/2ε2

≈ 1
2
(2 +

√
2)1/2

(
1 +

Qd�

2ε2

)
− 1

2
(2 −

√
2)1/2

(
1 − Qd�

2ε2

)

=
√

2
2

(2 −
√

2)1/2
(

1 + [1 +
√

2]
Qd�

2ε2

)

≈
√

2
2

(2 −
√

2)1/2e(1+
√

2)Qd�/2ε2 .

Hence the final normalized state of the measuring device, for large ε, is

Φfin(Qd) ≈ (ε2π)−1/4e−(Qd−[1+
√

2]�/2)2/2ε2

= Φin(Qd − [1 +
√

2]�/2) .

If all the particles in the PPS ensemble couple to pointers, the distribution of final pointer
positions approaches |Φfin(Qd)|2, shown in Fig. 16.3.
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Wait! We made an error!

But we made no error. The distribution really peaks at the value (1 +
√

2)�/2, more than
twice the largest eigenvalue of Sz . Moreover, the width of the peak corresponds to the accuracy
of the measuring devices. The measuring devices “err” so consistently, they seem to be trying
to err.

In Hilbert space no one can hear you scream; but these mute measuring devices are trying
to tell a story. What is their story?

16.4 Weak Measurements and Weak Values

We can generalize the example of the last section. For a pre- and postselected ensemble, we
preselect an initial state |Ψin〉 and postselect a final state |Ψfin〉, with 〈Ψfin|Ψin〉 = 0. In
between the pre- and postselection, we measure a nondegenerate Hermitian operator. The
initial state of the measuring device is Φin(Qd) in Eq. (16.2), and the interaction Hamiltonian
for the measurement is Hint in Eq. (16.1). (We now drop the subscript on As.) Again, we
choose g(t) impulsive and assume that, during the measurement, the time evolution operator
for the measured system and measuring device is

e−(i/�)APd .

Then after the postselection, the (unnormalized) state of the measuring device is

〈Ψfin|e−(i/�)APd |Ψin〉Φin(Qd) =
∑
i

〈Ψfin|ai〉〈ai|Ψin〉Φin(Qd − ai) .

Here the ai are eigenvalues of A and the |ai〉 are corresponding eigenstates.
In the limit ε → 0, Φin(Qd − ai) and Φin(Qd − aj) are orthogonal for i = j. So

for ideal measurements, the probability of an outcome ai is proportional to the norm of
〈Ψfin|ai〉〈ai|Ψin〉 squared, as the ABL formula states. (See Eq. (10.8).) In the opposite
limit, ε is large and so is the uncertainty in Qd. On the other hand, ∆Pd is small,

∆Pd = �/
√

2ε ,

and the expectation value of Pd vanishes for a stationary pointer. Thus we take Pd to be small
and expand the time evolution operator:

〈Ψfin|e−(i/�)APd |Ψin〉Φin(Qd) ≈ 〈Ψfin|1 − (i/�)APd|Ψin〉Φin(Qd)
= 〈Ψfin|Ψin〉 [1 − (i/�)〈A〉wPd] Φin(Qd)
≈ 〈Ψfin|Ψin〉e−(i/�)〈A〉wPdΦin(Qd) . (16.13)

Here 〈A〉w (also denoted Aw) is the weak value of A on the PPS ensemble [3]:

〈A〉w ≡ 〈Ψfin|A|Ψin〉
〈Ψfin|Ψin〉 . (16.14)
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The notation 〈A〉w recalls 〈A〉; weak values indeed reduce to expectation values when |Ψfin〉 =
|Ψin〉. Eq. (16.13) shows that the displacement of the pointer is 〈A〉w:

Φfin(Qd) ≈ e−(i/�)〈A〉wPdΦin(Qd) = Φin(Qd − 〈A〉w) .

Thus for large ε, the measured values of A cluster around 〈A〉w.
The surprising value Sz = (1+

√
2)�/2 of the last section is a weak value, as we check by

substituting |Ψin〉 = (| ↑〉 + | ↓〉)/√2 and |Ψfin〉 = 1
2 (2 +

√
2)1/2| ↑〉 − 1

2 (2 − √
2)1/2| ↓〉

into Eq. (16.14). So is the negative value of kinetic energy of Sect. 16.2; we have

〈p2/2m〉w =
〈Ψfin|(p2/2m)|Ψin〉

〈Ψfin|Ψin〉 ,

where |Ψin〉 represents a particle bound by the δ-function potential well, and |Ψfin〉 represents
a particle far from the well. Equation (16.3) implies

p2/2m = Hs − V (x)

as an operator equation, and Eq. (16.14) implies, in general,

〈A+B〉w = 〈A〉w + 〈B〉w ;

and in particular,

〈p2/2m〉w = 〈Hs〉w − 〈V (x)〉w .
Now 〈Hs〉w = −α2

�
2/2m because |Ψin〉 is an eigenstate of Hs,

Hs|Ψin〉 = −(α2
�

2/2m)|Ψin〉 ,
and 〈V (x)〉w = 0 because V (x) vanishes in the final state, V (x)|Ψfin〉 ≈ 0. We have
〈p2/2m〉w = −α2

�
2/2m, the “unphysical” negative kinetic energy of Sect. 16.2.

A measurement ofA that yields 〈A〉w consistently is a weak measurement. As Eq. (16.13)
shows, a measurement of A on the PPS ensemble always yields 〈A〉w if ε is sufficiently
large. (See also Prob. 16.6.) But from the example of negative kinetic energy we see that
a measurement may be weak even if ε is not large. For any given ε, the kinetic energy
measurement is weak if |Ψfin〉 satisfies Eqs. (16.5–6).

In the other example, |Ψfin〉 is given and the measurement yields 〈Sz〉w = (1 +
√

2)�/2
only for large ε. But suppose we replace the single spin-1/2 particle with N spin-1/2 particles.
Let Sx, Sy and Sz represent components of total spin:

Sx =
N∑
i=1

S(i)
x , Sy =

N∑
i=1

S(i)
y , Sz =

N∑
i=1

S(i)
z , (16.15)

where i indexes the N particles. The boundary conditions

Sx
N

|Ψin〉 =
�

2
|Ψin〉 , Sz − Sx√

2N
|Ψfin〉 =

�

2
|Ψfin〉
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define a PPS ensemble. On this PPS ensemble we measure the observable A = Sz/N , which
has eigenvalues between −�/2 and �/2. Writing

A =
Sx
N

+
√

2 · Sz − Sx√
2N

, (16.16)

we immediately obtain 〈A〉w = (1 +
√

2)�/2. Now for any given ε, a measurement of A is
weak for large enough N . (See Sect. 16.6.)

Experiments on an optical version of this example demonstrated weak values [4]. Other ap-
plications of weak values include measurements of arrival times of particles tunnelling through
potential barriers [5], loss of interference in two-slit interferometers [6], and measurements of
superluminal and subluminal photon speeds [7].

16.5 A Quantum Shell Game

Place three walnut shells on a table, and let’s play a “shell game”.1 One player – call him
Shelly – shifts a small coin quickly among the three shells, while the rest of us guess (and bet)
where it is. In a (ho hum) classical shell game, the coin is certainly under one of the shells,
and Shelly, at least, knows which one. What about a quantum shell game?

A quantum coin can be in a superposition of three states |A〉, |B〉, |C〉 – one state for each
shell. For example, Shelly could prepare the coin in the initial state

|Ψin〉 =
1√
3
(|A〉 + |B〉 + |C〉) . (16.17)

By looking under one of the shells, we measure one of the projection operators ΠA = |A〉〈A|,
ΠB = |B〉〈B|, ΠC = |C〉〈C|. The result of the measurement is either 1 or 0: the coin is either
there or not there; it is never partly there. To model a quantum measurement of a projection
operator, let’s suppose that the coin carries a positive charge. We send an electron past a shell,
and if the coin is in the shell, its charge deflects the electron. A model interaction Hamiltonian
for a measurement of ΠC is

Hint = −g(t)ΠCX , (16.18)

where X is the transverse position of the electron. Again, it is convenient to assume g0 =∫
g(t)dt = 1. Let the initial state of the electron be

Φ(P ) = (ε2�
2π)−1/4e−P 2/2ε2�

2
, (16.19)

where P is the transverse momentum; for simplicity, we neglect the other components of the
electron momentum. The transverse momentum of the electron changes according to

dP

dt
= g(t)ΠC ,

so it changes by ΠC during the measurement. If the coin is in shell C (in state |C〉) the
electron deflects to the right; if it is not in shellC, the electron continues in a straight line. (See
Fig. 16.4.)

1Also called “thimblerig”.
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A B C

Figure 16.4: An electron deflected by positive charge in shell C.

So far, the quantum game resembles the classical game. But Shelly plays the game with
pre- and postselection. So if our measurement is ideal, we can apply the ABL formula; if our
measurement is weak, we can calculate weak values of ΠA, ΠB and ΠC . Suppose the final
state is

|Ψfin〉 =
1√
3
(|A〉 + |B〉 − |C〉) .

The ABL formula shows that the coin is certainly in shell A if we look there:

|〈Ψfin|ΠA|Ψin〉|2
|〈Ψfin|ΠA|Ψin〉|2 + |〈Ψfin|(ΠB + ΠC)|Ψin〉|2 = 1 .

(See Prob. 10.6.) Similarly, the coin is certainly in shell B if we look there. Only if we look
in shell C do we have a chance (equal to 4/5) of not finding the coin. So – if Shelly postselects
this final state – the quantum shell game pays better than the classical game!

Similarly, the weak values of ΠA and ΠB are both 1. But the weak value of ΠC is −1.
What is the meaning of 〈ΠC〉w = −1? Measurement supplies the meaning: Eqs. (16.13) and
(16.18) imply that the electron we send past shell C deflects to the left instead of to the right,
as if the coin carried a negative charge. (See Fig. 16.5.) But ΠC has no negative eigenvalue!
An optical version of this experiment, in which the three “shells” were three interfering photon
paths in a modified Mach-Zehnder interferometer, indeed yielded these weak values [8].

C

C

Figure 16.5: An electron deflected by weak negative charge in shell C.
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The weak value of ΠC might not even be real. In general, Eq. (16.14) is complex. Suppose
the initial state is still |Ψin〉 of Eq. (16.17) but Shelly postselects the final state

|Ψfin〉 =
1√
3
(i|A〉 − |B〉 − i|C〉) .

For this PPS ensemble the weak value of ΠB is 1, while 〈ΠA〉w = −i and 〈ΠC〉w = i.
Negative charge is familiar, but what about imaginary charge? How do we measure – and
interpret – an imaginary weak value?

Imaginary weak values have a general effect on the size of PPS ensembles [9]. Con-
sider a weak measurement of an observable A on an ensemble of systems preselected in the
state |Ψin〉 and postselected in the state |Ψfin〉. What fraction of the preselected systems
pass the postselection? Equation (16.13) shows that, as long as 〈A〉w is real, the fraction is
|〈Ψfin|Ψin〉|2. That is, the size of the PPS ensemble depends on |Ψin〉 and |Ψfin〉 – but not on
A. But if 〈A〉w is not real, then e−(i/�)〈A〉wPd is not unitary, and the size of the PPS ensemble
depends on the imaginary part of 〈A〉w. That is, the measurement creates or destroys systems
in the pre- and postselected states. So 〈A〉wPd imitates a nonunitary Hamiltonian, i.e. an
effective Hamiltonian for a process that creates or destroys systems. (See Prob. 16.9.) In our
example, when 〈ΠC〉w is imaginary 〈ΠC〉wX imitates an effective Hamiltonian that couples
an imaginary charge to the passing electron.2

16.6 The Quantum Walk

A weak value depends on pre- and postselected states of a system. Hence a measured weak
value depends on the pre- and postselected states of a system. A measured value depends on
the state of a system after the measurement? Can we say that? The most complete description
of a quantum system, we claim, involves two state vectors, past and future boundary conditions
on the system. The contrary claim is that the most complete description of a quantum system
involves only one state, and we are just playing a game of errors: Weak measurements yield
errors, from which we postselect weak values.

A game – even a game of errors – has rules. Consider a system with a Hamiltonian H
and two observables, A and B, that commute with H but not with each other. The initial state
of the system is |Ψin〉, with A|Ψin〉 = a|Ψin〉; the final state of the system is |Ψfin〉, with
B|Ψfin〉 = b|Ψfin〉. What can we say about possible intermediate measurements? We can
say that a measurement ofA at an intermediate time would yield a, or even that a measurement
ofA and thenB would yield a and then b. We cannot say that a measurement ofB and thenA
would yield b and then a, since a measurement of B may disturb A. But weak measurements
disturb less. Consider a PPS ensemble with the initial and final states |Ψin〉 and |Ψfin〉. A
weak measurement of A on this PPS ensemble would yield a distribution peaked at a, even
after a weak measurement ofB. A weak measurement of, say,A+B would yield a distribution

2Note that if 〈ΠC〉w is real, then 〈P 〉 shifts by 〈ΠC〉w during the measurement. But if 〈ΠC〉w is imaginary,
〈P 〉 does not shift at all. Rather, it is the conjugate variable 〈X〉 that shifts: the imaginary charge shifts 〈X〉 by
i〈ΠC〉w/�ε2 during the measurement. The conjugate variable X shifts when the initial state Φ(P ) is a gaussian in
P . In general, the vacuum state of the electric field is a gaussian in E and an imaginary weak charge could shift the
vector potential A conjugate to the electric field E, changing the magnetic field B. See Prob. 16.10 and Sect. 17.5.
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peaked at a+ b, the weak value of A+B, even if a+ b is not an eigenvalue of A+B. This
game works because weak measurements obey two rules. First, weak measurements of A and
B disturb each other only slightly. Second, weak measurements are inaccurate and can yield,
“by error”, the weak value 〈A+B〉w = 〈A〉w + 〈B〉w.

These two rules are intimately related. The second concerns the uncertainty ∆Qd in the
position of a pointer; the first concerns the conjugate momentum Pd and its uncertainty ∆Pd.
A measurement of A with interaction Hamiltonian Hint,

Hint = g(t)APd ,

implies a change in B that is proportional to Pd:

dB

dt
=
i

�
g(t)[B,A]Pd .

If the measurement is ideal, the initial wave function Φin(Qd) of the pointer is a δ-function;
then Pd and dB/dt are unbounded. Conversely if we bound dB/dt, the measurement cannot
be ideal and there will be errors. For example, if we boundPd to a finite interval, then Φin(Qd)
will be analytic and extend over the complexQd plane.3 Then the expansion of the exponential
in Eq. (16.13) will be valid and the measured value will be the weak value. Moreover, the shift
in Qd will not change the shape of Φ(Qd). (See Eq. (5.8).) The game of errors is consistent.

Because the game is consistent, we can play it two different ways. We now do so and
arrive at the “quantum walk”. Consider a set of N spin-1/2 degrees of freedom with zero
Hamiltonian. Let Sx, Sy and Sz be components of total spin, as in Eq. (16.15), and let the
initial state |Ψin〉 be an eigenstate of Sx:

|Ψin〉 = 2−N/2
N⊗
i=1

(| ↑〉i + | ↓〉i) .

The initial wave function of the measuring device is the gaussian Φin(Qd) in Eq. (16.2). Thus
the overall initial state is |Ψin〉Φin(Qd). Let the final state |Ψfin〉 of the spins be

|Ψfin〉 =
N⊗
i=1

(α↑| ↑〉i + α↓| ↓〉i) ,

where |α↑|2 + |α↓|2 = 1. On the PPS ensemble with these initial and final spin states, we
measure the observable C = 2Sz/N�. Then the final state of the measuring device is, up to
normalization,

〈Ψfin|e−i2SzPd/N�
2 |Ψin〉Φin(Qd) . (16.20)

Now on the one hand, we can calculate the final state by immediately expanding the
exponential in Eq. (16.20). Applying Eq. (16.13), we find that the pointer moves to the weak
value

〈C〉w =
〈Ψfin|C|Ψin〉
〈Ψfin|Ψin〉 =

α↑ − α↓
α↑ + α↓

.

3For Φin(Qd) to be analytic it is sufficient, but not necessary, to bound Pd to a finite interval. Equation (16.2) is
analytic and its Fourier transform is nonzero for all Pd, vanishing exponentially in |Pd|2.
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Note 〈C〉w can be any complex number, while the eigenvalues of C range from −1 to 1. On
the other hand, we can calculate the final state of the pointer by first applying e−i2SzPd/N�

2
to

the initial state |Ψin〉Φin(Qd):

e−i2SzPd/N�
2 |Ψin〉Φin(Qd) = 2−N/2

N⊗
i=1

(
e−iPd/N�| ↑〉i + eiPd/N�| ↓〉i

)
Φin(Qd)

(16.21)

Projecting Eq. (16.21) onto the final state |Ψfin〉, we obtain the final (unnormalized) state of
the pointer:

2−N/2
(
α↑e−iPd/N� + α↓eiPd/N�

)N
Φin(Qd) . (16.22)

Equation (16.22) represents a superposition of many pointer states. Expanding the expression
in brackets according to the binomial theorem, we see that it is a superposition of pointer states
displaced by at most 1 in either direction. So how can Eq. (16.22) represent a pointer displaced
by 〈C〉w if 〈C〉w is out of this range?

Apparently the pointer states interfere, constructively forQd ≈ 〈C〉w and destructively for
other values of Qd. Indeed, we can verify this interference. Since

α↑e−iPd/N� + α↓eiPd/N� ≈ α↑(1 − iPd/N�) + α↓(1 + iPd/N�)
= (α↑ + α↓) − (α↑ − α↓)iPd/N�

= (α↑ + α↓)(1 − i〈C〉wPd/N�) (16.23)

and

lim
N→∞

(1 − i〈C〉wPd/N�)N = e−i〈C〉wPd/� , (16.24)

we find that, for large enoughN , Eq. (16.22) does indeed imply the final pointer state Φfin(Qd)
= Φin(Qd − 〈C〉w).

Mathematically speaking, Eq. (16.22) does not look like e−i〈C〉wPd/�Φin(Qd). Eq. (16.22)
corresponds to a superposition of waves eikPd/� where k = −1,−1+2/N,−1+4/N, . . . , 1.
If e−i〈C〉wPd/� is not one of these waves, how can we obtain it by superposing them? Sur-
prisingly, we can: this superposition, called a superoscillation, is consistent with Fourier’s
theorem [10]. Physically, Eq. (16.22) is analogous to a random walk. We can generate a ran-
dom walk in one dimension by tossing a coin at each step. In Eq. (16.22), we toss a quantum
coin – a spin – to generate a quantum random walk [11]. If the coefficients α↑ and α↓ in
Eq. (16.22) were probabilities, each term in the expansion of Eq. (16.22) would represent a
random walk, with a coefficient equal to its probability. A classical random walk of N steps
yields a typical displacement of

√
N , and never more than N . But the coefficients α↑ and α↓

are probability amplitudes; the quantum walk superposes classical random walks and yields
arbitrary displacements.

Section 16.2 presents a paradox of two incompatible interpretations. Each interpretation
is self-consistent, and the calculations to which they correspond are equivalent. We have a
paradox, but no contradiction. We just have to choose an interpretation. But each interpretation
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rests on an assumption. If we say that kinetic energy can be negative, we say that values
measured as kinetic energy, clustering as expected for kinetic energy, around a predicted
negative value of kinetic energy, are negative kinetic energy. This interpretation rests on the
assumption that physical theories should be simple. If we say that kinetic energy cannot be
negative, we say that a measured value cannot depend on what follows the measurement. This
interpretation rests on the assumption that quantum mechanics contains an arrow of time – an
assumption that Chap. 10 challenges.

16.7 Faster than Light

Negative kinetic energy and imaginary charge are just two among many surprising weak values.
We now apply the quantum walk to show that the weak speed of a charged particle can exceed
the speed of light in vacuo. Next we calculate the electromagnetic field of the particle and find
that it emits Cherenkov radiation: like any charged particle moving faster than light through
a medium, a superluminal particle emits Cherenkov radiation [12]. Weak superluminal speed
illustrates the consistency among weak measurements on a PPS ensemble.

We start with a Hamiltonian for a particle moving at constant speed: H = pzvz , where
pz = −i�∂/∂z and vz operates on an internal Hilbert space of the particle:

vz =
c

N

N∑
i=1

σ(i)
z .

(The Pauli matrices represent speed, not spin; the particle has no magnetic moment.) The
eigenvalues of vz are −c,−c + 2c/N, . . . , c − 2c/N, c, where c is the speed of light. The
particle moves with speed vz in the z-direction,

ẋ = [x,H]/i� = 0 , ẏ = [y,H]/i� = 0 , ż = [z,H]/i� = vz ,

hence the change in position z measures vz .
If the only allowed values of vz are its eigenvalues, the speed of the particle cannot exceed

the speed of light. But consider the following weak measurement of vz . At t = 0, we preselect
an initial state |Ψin〉Φ(x, 0), where Φ(x, 0) represents the particle approximately localized at
x = (x, y, z) = 0,

Φ(x, 0) = (ε2π)−3/4e−x2/2ε2 , (16.25)

and |Ψin〉 is the particle’s internal state. At time t we postselect the internal state |Ψfin〉. For
|Ψin〉 and |Ψfin〉 we choose, as in the last section,

|Ψin〉 = 2−N/2
N⊗
i=1

(| ↑〉i + | ↓〉i) ,

|Ψfin〉 =
N⊗
i=1

(α↑| ↑〉i + α↓| ↓〉i) , (16.26)
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with |α↑|2 + |α↓|2 = 1. Our chances of postselecting the state |Ψfin〉 may be very small, but if
we repeat the experiment again and again, eventually we will postselect |Ψfin〉. Then Φ(x, t)
is

Φ(x, t) = 〈Ψfin|e−ipzvzt/�|Ψin〉Φ(x, 0) , (16.27)

up to normalization. Evaluating Eq. (16.27) exactly, we obtain

Φ(x, t) = 2−N/2
(
α↑e−ipzct/N� + α↓eipzct/N�

)N
Φ(x, 0) . (16.28)

Just as in Eqs. (16.23–24) we expand

α↑e−ipzct/N� + α↓eipzct/N� ≈ α↑(1 − ipzct/N�) + α↓(1 + ipzct/N�)
= (α↑ + α↓) − (α↑ − α↓)ipzct/N�

= (α↑ + α↓)(1 − ipz〈vz〉wt/N�) , (16.29)

and since

lim
N→∞

(1 − ipz〈vz〉wt/N�)N = e−ipz〈vz〉wt/� (16.30)

we find that, for large N , Φ(x, t) ≈ Φ(x, y, z − 〈vz〉wt, 0). At time t the particle is displaced
by 〈vz〉wt along the z-axis. Now if α↑ and α↓ are real and α↑α↓ is negative, then the weak
value of vz ,

〈vz〉w =
〈Ψfin|vz|Ψin〉
〈Ψfin|Ψin〉 =

α↑ − α↓
α↑ + α↓

c ,

exceeds c in magnitude. Thus the weak speed of the particle could be superluminal.
Weak superluminal speed could be an error, since the width ε of Φ(x, 0) must be nonzero.

(Otherwise there would be no tails in Φ(x, t) to interfere constructively near z = 〈vz〉wt.) Yet
the weak value does not seem to be an error, because whenever our pre- and postselections
(which are independent of Φ(x, 0)) yield |Ψin〉 and |Ψfin〉, respectively, measured values of
the displacement of the particle over a time t cluster about 〈vz〉wt.

For measurements of vz to to cluster about the weak value, the probability of postselecting
|Ψfin〉 must be smaller than the probability of obtaining the weak value by error (without post-
selection). Otherwise, when we postselect |Ψfin〉, we would most likely not get superluminal
speed. Now consider repeated weak measurements of the particle’s position. Since weak
measurements do not interfere with one another, the measured values will be uncorrelated;
there will be no trend towards superluminal speed, even if one of the measurements shows the
particle travelling with superluminal speed. Or consider the measured value Sz = N�/2 of
Sect. 16.1. The value is irrelevant to subsequent measurements ofSz , which are just as unlikely
as before to yield Sz = N�/2; it is just an error. Without postselection, there is no consistency
in measurement errors. Unless and until we postselect, they are just errors. With pre- and
postselection, however, measured values in this thought experiment consistently exceed c.

The charged particle has an electromagnetic field. What is the field when 〈vz〉w is superlu-
minal? Suppose first that vz equals one of its eigenvalues, and let V (x′, t; vz) denote the scalar
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potential at x′, t of a particle of charge q moving along the z-axis with z = vzt. We obtain
V (x′, t; vz) via a Lorentz boost, by vz in the z-direction, of the Coulomb potential V (x′, t; 0):

V (x′, t; vz) = q
{
[(x′)2 + (y′)2](1 − v2

z/c
2) + (z′ − vzt)2

}−1/2
. (16.31)

We obtain the vector potential A(x′, t; vz) in the same way; it has only one nonzero component,

Az(x′, t; vz) =
vz
c
V (x′, t; vz) .

These are the classical potentials of a point charge moving along the axis with z = vzt. But
our moving charge is a quantum particle, and its potentials are quantum potentials. To treat
these potentials, we simply postulate an effective two-particle interaction between the moving
charge and a test particle. That is, to the Hamiltonian H = pzvz of the moving charge we add
the Hamiltonian H ′ of a (nonrelativistic) test particle:

H ′ =
1

2m
(p′ − q′A)2 + q′V . (16.32)

In H ′, the test particle has mass m and charge q′, and the potentials are

V (x′) = q
{[

(x′ − x)2 + (y′ − y)2
]
(1 − v2

z/c
2) + (z′ − z)2

}−1/2
,

Az(x′) =
qvz
c

{[
(x′ − x)2 + (y′ − y)2

]
(1 − v2

z/c
2) + (z′ − z)2

}−1/2
. (16.33)

The equations of motion obtained from H +H ′ yield (x, y, z) = (0, 0, vzt) together with the
correct motion of the test particle in the electromagnetic field of the moving charge.4 Now
we treat V and Az as quantum operators and calculate their effect on the test particle. We
will see that if the moving charge has weak speed 〈vz〉w, then 〈vz〉w takes the place of vz in
Eqs. (16.33).

We preselect the state |Ψin〉Φ(x, 0) of the moving charge and, after a time T , postselect
the state |Ψfin〉. (See Eqs. (16.25–26).) We also prepare the test particle in a localized state
Ω(x′, 0), where Ω(x′, 0) is analytic in x′. Since we want the test particle to measure the
instantaneous values of V and Az at the end of this evolution (and not their average values
during or after the evolution), we “turn on” H ′ instantaneously at time T . (Formally, we
multiply H ′ by δ(t − T ).) The state of the moving charge and the test particle after the
postselection is then

Φ(x, T )Ω(x′, T ) = 〈Ψfin|e−i[(p′−q′A)2/2m+q′V ]/�e−ipzvzT/�|Ψin〉Φ(x, 0)Ω(x′, 0) .
(16.34)

The potentials V and A in Eq. (16.34), as defined by Eqs. (16.33), contain vz . But we can
show that the weak speed 〈vz〉w should replace vz in Eq. (16.34). We begin with the right-hand
side of Eq. (16.34). We can expand the first exponential,

e−i[(p′−q′A)2/2m+q′V ]/� ,

4The equation of motion (x, y, z) = (0, 0, vzt) impliesV (x′) = V (x′, t; vz) andAz(x′) = Az(x′, t; vz). The
equation of motion for the momentum p of the moving charge is unphysical, but it has no measurable consequences.
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as a power series in vz . Thus, the right-hand side of Eq. (16.34) is a sum of terms of the form

〈Ψfin|vnz e−ipzvzT/�|Ψin〉

multiplied on either side by functions that do not depend on vz . Now we have, for any n and
in the limit N → ∞,

〈Ψfin|vnz e−ipzvzT/�|Ψin〉 =
(
i�

T

∂

∂pz

)n
〈Ψfin|e−ipzvzT/�|Ψin〉

= 〈Ψfin|Ψin〉
(
i�

T

∂

∂pz

)n
e−ipz〈vz〉wT/�

= 〈Ψfin|Ψin〉(〈vz〉w)ne−ipz〈vz〉wT/� . (16.35)

(Compare Eqs. (16.27–30).) That is, we can simply replace vz by 〈vz〉w everywhere it appears
in the power series. We drop the factor 〈Ψfin|Ψin〉 (to normalize) and obtain

Φ(x, T )Ω(x′, T ) = e−i[(p′−q′A)2/2m+q′V ]/�Φ(x, y, z − 〈vz〉wT, 0)Ω(x′, 0) ,

where

Az =
〈vz〉w
c

V =
〈vz〉w
c

V (x′ − x, 0; 〈vz〉w) .

Since V (x′ −x, 0; 〈vz〉w) equals V (x′) as defined in Eqs. (16.33) with 〈vz〉w taking the place
of vz , the scalar and vector potentials are exactly the potentials of a charge moving with weak
speed 〈vz〉w (folded with the width of the localized state Φ) and have the corresponding effect
on the test particle. Now if 〈vz〉w exceeds the speed of light, V andAz correspond to Cherenkov
radiation, the shock wave of a charged particle moving faster than light through a medium.5

16.8 Galilean Dialogue

[Simplicio, Salviati and Sagredo stop at the Kinneret beach.]

SAGREDO. Frankly, Salviati, I again feel the sand slipping through my fingers. You want
two states – a past state evolving forwards in time and a future state evolving backwards in time
– to describe a quantum system. Negative kinetic energy is remarkable – even irresistable –
but how far can we control future states? The world we live in does contain an arrow of time,
even if quantum theory does not, so these measurements on pre- and post-selected ensembles
are artificial.

SIMPLICIO. As for me, I was unable to follow all the mathematics, and it is still quite
unclear to me when to call a measured value an error and when to call it a weak value. But I
was struck by your remark that a measured negative value of kinetic energy – even if it exactly
coincides with the predicted negative value – is not yet a measured weak value, unless and until
we postselect.

5For 〈vz〉w superluminal, V (x′ − x, 0, 〈vz〉w) vanishes outside a cone trailing the source. For imaginary weak
speed see Sects. 16.5 and 17.5.
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SALVIATI. Otherwise we would deny the very possibility of errors in measurements, which
of course we do not. The correlation between weak measurements and postselection is – must
be – a one-way correlation. Postselecting |Ψfin〉 after weak measurements of A on |Ψin〉, we
find that the measured values cluster around 〈A〉w, however strange 〈A〉w may be. But unless
we postselect |Ψfin〉, the weak measurements rarely yield 〈A〉w, and those that do, do not
improve our chances of postselecting |Ψfin〉. Therefore, the probability that the measurement
yields 〈A〉w by error, small as it is, must exceed the probability of postselecting |Ψfin〉.

SAGR. That is what bothers me – the miniscule probability of postselecting |Ψfin〉 and
the conditions on |Ψfin〉.

SALV. Sagredo, the examples may seem artificial, but pre- and postselected states describe
the quantum world more completely than do preselected states alone. Shouldn’t a more com-
plete description come at higher price? Small probabilities and conditions on the postselected
state are the price we pay for a more complete description.

Postselection turns measurement errors into superluminal speed and fluctuations of the
vacuum into Cherenkov radiation. The description is complete and consistent: a measured
weak value may strike us as madness, but then we look at other weak values measured on the
same PPS ensemble and see method in the madness.

SIMP. Superluminal speed is not consistent with relativistic causality!

SAGR. Oh, but it is, Simplicio. We assumed that Φ(x, 0), the wave function of the moving
charge, is analytic, just as the wave function Φin(Qd) of a pointer must always be analytic.
The pointer shows the weak value only if Φin(Qd) is analytic, because then Φin(Qd) does not
vanish for any interval in Qd and can show, “by error”, the weak value. Likewise Φ(x, 0) is
analytic in z, so Φ(x, 0) and its derivatives at a given z determine Φ(x, 0) for all z. Hence
Φ(x, t) = Φ(x, y, z − 〈vz〉wt, 0) does not transmit any message, for the message is the same
for all z and t. Since it does not transmit any message, it does not transmit any superluminal
message, and weak superluminal speed is consistent with relativistic causality.

SIMP. Where is free will in this “complete description”?

SALV. Weak values are compatible with free will! Following a measurement of A we
can either postselect, or measure A again. If we postselect, we may interpret the result of the
measurement ofA as a weak value 〈A〉w; if we remeasureA, we may interpret the same result
as an error. These two interpretations are consistent, for they apply to different ensembles –
the former to a pre- and postselected ensemble and the latter to a preselected ensemble. How
we interpret a measured value depends on what else we choose to measure, but no one tells us
what to measure.

Problems

16.1 (a) A particle tunnels through a one-dimensional square well potential; its wave func-
tion is a superposition of eigenstates of the Hamiltonian with energies below the poten-
tial barrier. Show that the wave function does not vanish outside the potential barrier.
(b) For any wave function that vanishes outside the potential barrier, show that the
expectation value of the total energy is always greater than the potential barrier.
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16.2 Let V (x) in Eq. (16.3) equal V (x) = −(�2α/m)δ(x). Show that H has a single
bound state Ψin(x) =

√
αe−α|x| with energy −α2

�
2/2m.

16.3 Derive Eq. (16.10) including normalization, and show that the integral converges.

∗16.4 (a) Show that an upper bound on Eq. (16.10) is

�α

π

e(α−p0/�)x0−α2δ2/2

p2
0 − α2�2

∫
dp e−(p2−p20)δ2/2�

2 |Φin
(
Qd − (p− ip0)2/2m

) | .

(b) Show that this upper bound leads to the exponential eΣ where Σ is

Σ = (α−p0/�)x0−δ2
(
p2
0

�2 +
α2

2

)
+Qd

(
p2
0

mε2
− δ2m

�2

)
+

p4
0

m2ε2
+
δ4m2ε2

2�4 .

(c) Eliminate the dependence on Qd in Σ by setting p0 = δmε/�. Since p0 > α� we
then obtain Eq. (16.5). Now Eq. (16.10), the correction to Eq. (16.8), is negligible if
Σ � 0. Derive Eq. (16.6) from the condition Σ � 0.

16.5 For an oscillator of mass m and angular momentum ω, calculate the weak value
〈mωx2/� + p2/mω�〉w,

〈mωx2/� + p2/mω�〉w =
〈Ψfin|(mωx2/� + p2/mω�)|Ψin〉

〈Ψfin|Ψin〉 ,

assuming

[mω(x+ x0)2/� + (p+ p0)2/mω�]|Ψin〉 = |Ψin〉
and

[mω(x− x0)2/� + (p− p0)2/mω�]|Ψfin〉 = |Ψfin〉 .
∗16.6 Consider the following condition [13] on an observable A:

2n/2Γ(n/2)
εn(n− 2)!

[〈An〉w − 〈A〉nw] � 1 .

Show that if ε in Eq. (16.2) satisfies this condition forn = 2, 3, . . . , then we can neglect
the corrections to Eq. (16.13).

16.7 Show that the measurement of A in Eq. (16.16) yields 〈A〉w in the limit of large N ,
for any given ε.

16.8 (a) If a measurement of A on either |Ψin〉 or |Ψfin〉 yields a with certainty, show that

〈A〉w =
〈Ψfin|A|Ψin〉
〈Ψfin|Ψin〉 = a .

(b) Show that the converse is true, in the special case thatA is a nondegenerate observ-
able on a two-dimensional Hilbert space: if the weak value 〈A〉w equals an eigenvalue
a of A, then either |Ψin〉 or |Ψfin〉 is the corresponding eigenstate.
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16.9 Consider a system with states |1〉 and |2〉; its Hamiltonian is H = E1Π1 + E2Π2,
where Πi = |i〉〈i|. We couple the system to a single spin. The interaction Hamiltonian
for the system and spin isHint = αΠ2σz , andH +Hint is the complete Hamiltonian
for the coupled system and spin. At time t = 0, the state of the system and spin is
(|1〉 + |2〉) ⊗ (| ↑〉 + i| ↓〉)/2.
(a) Calculate the exact state of the system at time t = T . At time t = T we postselect
the spin in the state (| ↑〉 + | ↓〉)/√2. Show that, for small enough α, the Hamiltonian
for the system includes an effective nonunitary part −iαΠ2.
(b) Use the ABL formula, Eq. (10.8), to show that the probablility of finding the system
in the state |2〉 at times 0 ≤ t < T is half, independent of t. Hence the Hamiltonian of
the system is effectively nonunitary only after the postselection.

16.10 (a) Consider a weak measurement of ΠC according to Hint in Eq. (16.18), and let the
initial state of the measuring device be Φ(P ) in Eq. (16.19). Show that if 〈ΠC〉w is
real, then 〈P 〉 shifts from 〈P 〉 = 0 to 〈P 〉 = 〈ΠC〉w during the measurement, while if
〈ΠC〉w is imaginary, 〈P 〉 does not shift at all; rather, it is 〈X〉 that shifts from 〈X〉 = 0
to 〈X〉 = i〈ΠC〉w/�ε2.
(b) Now let the initial state of measuring device be

Φ(P ) =
sin εP√
πP

and calculate the final state of the measuring device after the weak measurement of
ΠC .

16.11 Prove that if the Fourier transform f̃(P ) of a function f(Q) vanishes outside a finite
interval in P , then f(Q) is analytic.

∗16.12 Define

I(n, z, t) =
∫ π

−π
dθeinθ−i(n/z) sin θeit cos θ ,

where n is an integer and z and t are real. Note that for any n and z, I(n, z, t) is a sum
of waves eiωt where |ω| ≤ 1. But prove that

lim
n→∞ I(n, z, t)/I(n, z, 0) = eizt

for every z > 1.

∗16.13 (a) For µ a constant and N positive, derive the following Taylor series:

(
1 +

µ

N

)N
= eµ

(
1 − µ2

2N
+

3µ4 + 8µ3

24N2 + . . .

)
.

(b) Eqs. (16.27–30) imply that Φ(x, t) = Φ(x, y, z − 〈vz〉wt, 0) in the limit N → ∞.
What if we do not take the limit N → ∞? Apply the Taylor series to show that

Nε2 � 〈vz〉2wt2

is a sufficient condition for a weak measurement of Φ(x, t) ≈ Φ(x, y, z − 〈vz〉wt, 0).
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16.14 Given a system in an initial state |Ψin〉, the probability of postselecting |Ψfin〉 is
p ≡ |〈Ψfin|Ψin〉|2. Before the postselection, suppose that a weak measurement of A
on |Ψin〉 yields

〈A〉w =
〈Ψfin|A|Ψin〉
〈Ψfin|Ψin〉 ,

with 〈A〉w real. Is the probability of postselecting the state |Ψfin〉 now larger than p?
Consider a fast measurement sequence (during which we can neglect the Hamiltonian
of the system): first, preparation of systems in the state |Ψin〉 and of measuring devices
in the state Φin(Qd) = (ε2π)−1/4e−Q2

d/2ε
2
; second, measurements ofA that leave the

measuring devices and measured systems in the state

e−iAPd/�|Ψin〉Φin(Qd) ;

third, postselection of the state Φin(Qd−〈A〉w) of the measuring devices. Show that,
to order 1/ε, the probability of postselecting |Ψfin〉 after this sequence is p; to order
1/ε3, it differs from p by

p

2ε2
[2〈A〉2w − 2〈A〉〈A〉w + 〈A2〉 − 〈A2〉w]

where 〈A〉 and 〈A2〉 are expectation values in the state |Ψin〉.
∗16.15 (a) A particle with charge q produces a Coulomb field of strength E = q/D2 at a dis-

tanceD. If the particle sits on the z-axis, show that a measurement of its Coulomb field
at a distanceD yields its position along the z-axis with uncertainty ∆z = (D3/2q)∆E.
(b) Consider the thought experiment of Sect. 16.7. The width of the wave function
Φ(x, 0) of Eq. (16.25) must satisfy the condition Nε2 � 〈vz〉2wt2 of Prob. 16.13 for
a weak measurement. But let an observer a distance D from the charge measure its
position at t = 0 with uncertainty ∆z � ε. Then the width of Φ(x, 0) will not satisfy
the condition. If D ≤ ct the observer may have causally disturbed the charge, but
if D > ct there cannot be any causal influence of the observer on the charge. So do
we conclude that the measurement cannot be weak? Derive

√
ND2∆E � 2q as the

condition for a weak measurement in this case, assuming 〈vz〉w > c.
(c) Now apply Prob. 8.14 to obtain �c > 4q2/N as a sufficient condition for a weak
measurement.
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17 Weak Values and Entanglement

Chapter 1 declares that we will not stop asking about quantum mechanics, “But how can it
be like that?” Here and there, the declaration is hard to uphold, and nowhere harder than in
Chap. 3. Chapter 3 sets out the only reasonable explanation of quantum entanglement – and
shows that it doesn’t work; as Bell put it, “The reasonable thing just doesn’t work.” Still we
ask, “But how can entanglement be like that?”

In this chapter, we study entanglement using weak values. We consider weak measurements
between a preselected state |Ψin〉 and a postselected state |Ψfin〉, where |Ψin〉 is entangled.
For example, the paradox in the next section involves an electron and a positron between pre-
and postselected states, where the preselected state is entangled. Weak measurements show
these particles to be entangled in unexpected ways.

17.1 Interaction-free Paradox

Section 6.4 describes the interaction-free measurement of Elitzur and Vaidman. The measuring
device is a Mach-Zehnder interferometer. (See Fig. 6.8.) If both paths through the interferom-
eter are clear, a photon passing through it exits in the direction of constructive interference. But
assume that a “bomb” (a detector) blocks one of the paths, and the bomb is certain to explode
if a photon hits it (the detector is perfectly efficient). Even so, the bomb may not explode, and
the photon may exit the interferometer in the direction of destructive interference. The bomb,
by not exploding, reveals which path the photon took, and thus eliminates the interference
between the two paths. Or, as Sect. 6.4 puts it, the bomb acts at a distance on the photon by
changing the expectation value of a modular operator.

Consider now sending electrons or positrons, instead of photons, through such an inter-
ferometer. Hardy [1] invented a paradox with two interferometers, one for electrons and the
other for positrons. The interferometers overlap in a corner where a path in one interferometer
crosses a path in the other. (See Fig. 17.1.) The momenta of the particles and the dimensions of
the interferometers are such that electrons passing through the electron interferometer always
arrive at detector C− if no positron enters their interferometer, and positrons passing through
the positron interferometer always arrive at detectorC+ if no electron enters their interferome-
ter. (The C in C− and C+ denotes constructive interference.) But if an electron and a positron
pass through the interferometers simultaneously, they may annihilate each other in the over-
lapping corner. Let us assume that an electron and a positron passing through simultaneously
always annihilate each other whenever their paths cross. If the particles annihilate each other,
no detector clicks. What if they do not annihilate each other?

Quantum Paradoxes: Quantum Theory for the Perplexed. Y. Aharonov and D. Rohrlich
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN 3-527-40391-4
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Figure 17.1: Two Mach-Zehnder interferometers with over-
lapping paths.

If the paths of the particles do not cross, there are three possibilities. The positron may
take its overlapping path while the electron takes its nonoverlapping path. We will denote this
state |o〉+ ⊗ |no〉−. Or the electron may take its overlapping path while the positron takes
its nonoverlapping path; then their state is |no〉+ ⊗ |o〉−. Finally, both particles may take
nonoverlapping paths. Then the state is |no〉+ ⊗ |no〉−. All three states are equally probable,
and if we absorb their phases into the definitions of the states |o〉+, |o〉−, |no〉+ and |no〉−, the
state of the particles as they exit the interferometers (before they arrive at the detectors) is

|Ψin〉 =
1√
3

[|o〉+ ⊗ |no〉− + |no〉+ ⊗ |o〉− + |no〉+ ⊗ |no〉−] .

If we project |Ψin〉 onto the positron’s nonoverlapping path |no〉+, we leave the electron in the
state +〈no|Ψin〉 = [|o〉− + |no〉−]/

√
2. We have assumed that in this case detectorC− clicks.

Hence detectorD− must click for the orthogonal state [|o〉− −|no〉−]/
√

2. Similarly, detector
C+ clicks for the positron state −〈no|Ψin〉 = [|o〉+ + |no〉+]/

√
2 and detector D+ clicks for

the orthogonal state [|o〉+ − |no〉+]/
√

2. Now if we compute joint probabilities for electrons
and positrons, we find that detectors C− and C+ click together with probability 3/4, and each
other pair of detectors (C− and D+, D− and C+, D− and D+) clicks with probability 1/12, if
the particles do not annihilate each other.

What do these clicks tell us? If the detector D+ clicks, it tells us that the electron crossed
into the positron interferometer; for, by assumption, positrons always arrive at detector C+ if
no electron enters their interferometer. Thus we conclude that the electron took its overlapping
path (and the positron took its nonoverlapping path). Similarly, if the detector D− clicks, it
tells us that the positron crossed into the electron interferometer; for, by assumption, electrons
always arrive at detector C− if no positron enters their interferometer. Thus we conclude that
the positron took its overlapping path (and the electron took its nonoverlapping path).

But what if detectors D− and D+ click together? We may conclude from the clicking
of detector D+ that the electron took its overlapping path, and we may conclude from the
clicking of detector D− that the positron took its overlapping path. But if both particles took
their overlapping paths, they must have annihilated each other! The simultaneous clicking of
D− and D+ leads to the paradoxical conclusion that neither D− nor D+ could have clicked.
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Thus the logic that explains the Elitzur-Vaidman experiment does not explain Hardy’s
experiment; it produces a paradox, not an explanation. We can describe the electron and the
positron via modular variables, but they do not resolve the paradox. (See Prob. 17.1.)

17.2 A Grin Without a Cat

Cats come and go, but not as the grinning Cheshire Cat would come and go:

“Did you say ‘pig,’ or ‘fig’?” said the Cat.

“I said ‘pig,’ ” replied Alice; “and I wish you wouldn’t keep appearing and
vanishing so suddenly: you make one quite giddy!”

“All right,” said the Cat; and this time it vanished quite slowly, beginning with
the end of the tail, and ending with the grin, which remained some time after the rest
of it had gone.

“Well! I’ve often seen a cat without a grin,” thought Alice; “but a grin without a
cat! It’s the most curious thing I ever saw in all my life!” [2]

Indeed, it is curious; but like many curious things, it has a quantum explanation. This section
explains how the Cheshire Cat could disappear while leaving its grin behind.

Cats are complicated systems. (See Chap. 9.) To simplify, we approximate the Cheshire
Cat as a particle with two grin states, | ↑〉 and | ↓〉; in the state | ↑〉 the Cat grins. (In the state
| ↓〉 it frowns.) Two states, |1〉 and |2〉, represent locations of the Cat in two cozy boxes. We
assume that the Hamiltonian of the Cat commutes with the projection operators for the grin
state

Π↑ ≡ | ↑〉〈↑ | , Π↓ ≡ | ↓〉〈↓ |
and the location

Π1 ≡ |1〉〈1| , Π2 ≡ |2〉〈2|
of the Cat. At time t = 0, we preselect the Cat in the state

|Ψin〉 =
1
2

[| ↑〉 + | ↓〉] |1〉 +
1
2

[| ↑〉 − | ↓〉] |2〉 ,

and we postselect it at time t = T in the state

|Ψfin〉 =
1
2
[| ↑〉 − | ↓〉] [|1〉 + |2〉] .

Where is the Cat at intermediate times? To locate the Cat, we calculate the weak values of
Π1 and Π2. At times 0 ≤ t ≤ T we have 〈Π1〉w = 0 and 〈Π2〉w = 1. So, clearly, the
Cat passes its time in box 2. Is it grinning during this time? It sure is! We calculate that
〈σz〉w = 〈Π↑ − Π↓〉w = 1, so at all intermediate times, the Cat is grinning.

The Cat is grinning, and the Cat is in box 2. Hence it is obvious, dear Alice, that the Cat
is grinning in box 2. Obvious, but false: the weak value of σzΠ2 vanishes. There is no net
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grin in box 2! We can measure the Cat’s grin and location simultaneously (since σz commutes
with the projectors Π1 and Π2); but the weak value of the product 〈σzΠi〉w does not equal
the product of the weak values 〈σz〉w and 〈Πi〉w. Thus, although the Cat grins and the Cat is
in box 2, we cannot conclude that the grin is in box 2! On the contrary, the grin is in box 1 –
the weak value of σzΠ1 is 1. The Cheshire Cat is in box 2 but its grin is in box 1.

A grin without a cat! Although the preselected state |Ψin〉 entangles the location of the
Cat and its grin state, we seem to have quite disentangled the grin and the Cat. To analyze this
effect, let us calculate the weak values of products of the projectors Π1, Π2, Π↑ and Π↓. We
have

〈Π1Π↑〉w = 1/2 ,
〈Π1Π↓〉w = − 1/2 ,
〈Π2Π↑〉w = 1/2 ,
〈Π2Π↓〉w = 1/2 . (17.1)

These four weak values add up to 1, as they must since Π↑ + Π↓ = 1 = Π1 + Π2. The four
products Π1Π↑, Π1Π↓, Π2Π↑ and Π2Π↓ sum to 1 and ordinarily represent occupation; e.g.
Π1Π↑ represents the occupation of box 1 by the grinning Cat. But while the eigenvalues of a
projector can be only 0 or 1, and the expectation value of a projector in any state must lie in
the interval [0, 1], the weak value of Π1Π↓ is negative.

“Curiouser and curiouser!” as Alice might say. Yet if we interpret these weak values
carefully, they give a consistent account of the Cheshire Cat. The weak location of the Cat is
in box 2, because 〈Π2〉w is the sum of 〈Π2Π↑〉w and 〈Π2Π↓〉w, both of which equal 1/2; it
could not be in box 1, because the sum of 〈Π1Π↑〉w and 〈Π1Π↓〉w vanishes. The net weak
grin in box 2 vanishes, because 〈Π2Π↑〉w represents a grinning Cat and 〈Π2Π↓〉w represents
a frowning Cat. But a frown is an inverted grin, i.e. it is a grin with respect to an inverted
axis. (See Fig. 17.2.) Since the weak values of the grin and the frown in box 2 are equal, they
cancel one another. Most curious is the grin in box 1. The weak value of the frown in box 1 is

=

=

Figure 17.2: Cheshire Cat grin states. A frown is a
grin with respect to the inverted axis.
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−1/2; but a negative weak value for a frown counts as a positive weak value for a grin, hence
〈Π1Π↑〉w and 〈Π1Π↓〉w combine to yield a grin without a cat.

As noted, cats are complicated systems. We cannot yet separate a cat from its grin, but
we could try separating a simpler system from its internal degrees of freedom. For example,
we could try separating a neutron from its magnetic moment; the equations of this section
apply to a neutron and its magnetic moment just as they apply to the Cat and its grin. We
preselect neutrons in a neutron interferometer [3] in the state |Ψin〉 and postselect them in the
state |Ψfin〉, where now | ↑〉 and | ↓〉 refer to neutron spin states and |1〉 and |2〉 refer to the
two arms of the interferometer. Any measurement, weak or strong, of the neutron’s location
will find the neutron in state |2〉, i.e. will locate the neutron in arm 2 of the interferometer.
Any measurement will also show the neutron to have σz = 1. (See Prob. 17.2.) A weak
measurement of σzΠ2 will show that 〈σzΠ2〉w vanishes, while a weak measurement of σzΠ1

will show that 〈σzΠ1〉w equals 1. What does it mean to measure σzΠ1 and σzΠ2 weakly?
We could, for example, weakly measure the magnetic field in both arms of the interferometer;
the measurements would show that the magnetic moment of the neutron takes arm 1 of the
interferometer. The magnetic moment takes one arm of the interferometer but the neutron itself
takes the other arm!

17.3 Alice and Bob in Wonderland

Let us apply weak values to the EPR-Bohm experiment. (See Sect. 3.4.) Alice and Bob share
many pairs of spin-1/2 systems prepared in an initial singlet state

|Ψin〉 = [| ↑〉A ⊗ | ↓〉B − | ↓〉A ⊗ | ↑〉B ] /
√

2 .

Alice measures the spin component of each of her systems along an axis that she chooses at
random from a finite list of axes; Bob does likewise for his systems, from the same list. For
example, on some pairs Alice may measure the spin component along the x-axis while Bob
measures the spin component along the y-axis. Let us assume that they do, and we consider
only those pairs for which σAx = 1 and σBy = 1; that is, we postselect the state

|Ψfin〉 = [| ↑〉A + | ↓〉A] ⊗ [| ↑〉B + i| ↓〉B ] /2 . (17.2)

Here is a formulation of the EPR paradox: we assume, with EPR, that the results of Alice’s
measurements cannot depend on Bob’s choice of axis, and vice versa. Hence the systems,
before reaching Alice’s and Bob’s respective laboratories, must carry (at least) definite values
of σAx , σAy , σBx and σBy , all independent of what axes Alice and Bob will choose. Now note
that |Ψin〉 is an eigenvalue of the three operators σAx σ

B
x , σAy σ

B
y and σAx σ

B
y + σAy σ

B
x :

σAx σ
B
x |Ψin〉 = σAy σ

B
y |Ψin〉 = −|Ψin〉 (17.3)

and

(
σAx σ

B
y + σAy σ

B
x

) |Ψin〉 = 0 . (17.4)
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From these eigenvalue equations we can draw conclusions about observables that Alice and Bob
did not measure on these postselected pairs. From Eq. (17.3) we conclude thatσBx = σAy = −1,
while from Eq. (17.4) we conclude that σAy σ

B
x = −1. But these are incompatible conclusions!

How can it be like that? Let us proceed, as we did in the last section, by calculating weak
values of projectors. We define four projectors, ΠA

↑y and ΠA
↓y projecting onto states with

σAy = ±1 and ΠB
↑x and ΠB

↓x projecting onto states with σBx = ±1. Explicitly, they are

ΠA
↑y = (| ↑〉A + i| ↓〉A) (A〈↑ | − iA〈↓ |) /2 ,

ΠA
↓y = (| ↑〉A − i| ↓〉A) (A〈↑ | + iA〈↓ |) /2 ,

ΠB
↑x = (| ↑〉B + | ↓〉B) (B〈↑ | + B〈↓ |) /2 ,

ΠB
↓x = (| ↑〉B − | ↓〉B) (B〈↑ | − B〈↓ |) /2 .

The weak values of the products ΠA
↑yΠ

B
↑x, ΠA

↑yΠ
B
↓x, ΠA

↓yΠ
B
↑x and ΠA

↓yΠ
B
↓x are

〈ΠA
↑yΠ

B
↑x〉w = − 1/2 ,

〈ΠA
↑yΠ

B
↓x〉w = 1/2 ,

〈ΠA
↓yΠ

B
↑x〉w = 1/2 ,

〈ΠA
↓yΠ

B
↓x〉w = 1/2 . (17.5)

Hence for Alice’s systems, we have

〈ΠA
↑y〉w = 〈ΠA

↑yΠ
B
↑x〉w + 〈ΠA

↑yΠ
B
↓x〉w = 0 ,

〈ΠA
↓y〉w = 〈ΠA

↓yΠ
B
↑x〉w + 〈ΠA

↓yΠ
B
↓x〉w = 1 ,

and so the weak values conform to the constraint σAy = −1. Similarly, for Bob’s systems we
have

〈ΠB
↑x〉w = 〈ΠA

↑yΠ
B
↑x〉w + 〈ΠA

↓yΠ
B
↑x〉w = 0 ,

〈ΠB
↓x〉w = 〈ΠA

↑yΠ
B
↓x〉w + 〈ΠA

↓yΠ
B
↓x〉w = 1 ,

and so the weak values conform to the constraint σBx = −1. Finally, we compute the weak
value of σAy σ

B
x to get

〈σAy σBx 〉w =
〈
(ΠA

↑y − ΠA
↓y)(Π

B
↑x − ΠB

↓x)
〉
w

= 〈ΠA
↑yΠ

B
↑x〉w − 〈ΠA

↑yΠ
B
↓x〉w − 〈ΠA

↓yΠ
B
↑x〉w + 〈ΠA

↓yΠ
B
↓x〉w

= − 1 ;

so this weak value conforms to the constraint σAy σ
B
x = −1. Note that the projectors ΠA

↑yΠ
B
↑x

and ΠA
↓yΠ

B
↓x correspond to σAy σ

B
x = 1, but the negative weak value 〈ΠA

↑yΠ
B
↑x〉w exactly can-

cels the positive weak value 〈ΠA
↓yΠ

B
↓x〉w, leaving 〈σAy σBx 〉w= −〈ΠA

↑yΠ
B
↓x〉w−〈ΠA

↓yΠ
B
↑x〉w =

−1. Thus weak values reconcile all the constraints. Indeed, instead of calculating the weak
values in Eq. (17.5) from |Ψin〉 and |Ψfin〉, we could have obtained them as the solutions of
the three constraints 〈σAy 〉w = −1, 〈σBx 〉w = −1 and 〈σAy σBx 〉w = −1.

In our calculations, we took |Ψfin〉 of Eq. (17.2) to be the postselected state. But we could
have chosen any product state as the postselected state. In particular, we could take |Ψfin〉 to
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be any state postselected from Alice’s measurements of σAx or σAy and Bob’s measurements of
σBx or σBy . Then, by folding the weak values between |Ψin〉 and |Ψfin〉 with the probability of
postselecting |Ψfin〉, we would obtain “probabilities” for all four observables that Alice and
Bob might measure, whether or not they in fact measure them. The probabilities would not be
limited to the interval [0, 1] however. (See Prob. 17.6.)

Negative probabilities are not new; Wigner was the first to apply them to quantum theory
[4]. However, negative probabilities have never had implications for measurements. Here
they arise in weak values, measurable in weak measurements. Still, we must interpret these
negative weak values with care. Negative probabilities do not make quantum mechanics
more reasonable. So we do not interpret 〈ΠA

↑yΠ
B
↑x〉w = −1/2 as a negative probability.

Our (minimal) interpretation is that pairs of spin systems can have opposite physical effects,
according to the sign of 〈ΠA

↑yΠ
B
↑x〉w. In general, physical systems can have opposite physical

effects, in weak measurements, according to the signs of the weak values.
Consider the shell game of Sect. 16.5, for example. In the classical shell game, a single

coin lurks under one of three shells; the occupation is 1 for one shell and 0 for the two others.
In the quantum shell game (with pre- and postselection), the weak “occupation” is −1 for one
shell and 1 for the two others. In both the classical and the quantum games, the total occupation
is 1. But in the quantum game, a positively charged coin with weak value 〈ΠC〉w = −1 repels
passing electrons as if it were a negatively charged coin in shell C. How many coins are there
in the quantum game – one, or three? There is only one coin, since the weak negative charge
in shell C repels passing electrons, but does not attract the other two shells (which themselves
attract passing electrons). Yet this one coin can attract and repel electrons.

17.4 Galilean Dialogue

[Salviati, Sagredo and Simplicio are sitting in a cafe overlooking Tiberias.]
SIMPLICIO. So this guy goes to a psychiatrist and says, “Doc, my brother’s crazy – he

thinks he’s a chicken!” And, uh, the doctor says –
SALVIATI. We all know the joke, Simplicio.1

SIMP. Well, when you say that a negative charge can masquerade as a positive charge, or
is negative with negative probability, aren’t you saying that quantum mechanics is crazy?

SALV. Negative probabilities are unreasonable, I agree. But I can reasonably interpret
weak values – even unexpected weak values – according to their effects on measuring devices.

SIMP. You only show how unreasonable quantum mechanics is.
SALV. I show how quantum mechanics is unreasonable.
SAGREDO. Perhaps, Simplicio, I can help you understand what Salviati is saying. The

guy in the joke is certainly crazy, yet it’s not certain that the guy’s brother is crazy. Likewise,
the fact that quantum mechanics drives us crazy does not prove that quantum mechanics is
crazy.

SALV. It drives us crazy because we still think classically, and it is not classical. We have to
change our thinking. We cannot change logic. Logic is independent of, and prior to, experiment.
We cannot change the laws of probability either – logic and probability are too closely related.

1See Chap. 1.
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But weak values can help us stop thinking classically about quantum mechanics. There is a
paradox about an electron and a positron in overlapping interferometers –

SAGR. We talked about it.2

SALV. Well, the paradox has the following conventional explanation. “We can talk only
about what we measure. For example, we can demonstrate that the positron took its overlap-
ping path by placing a sensor on its overlapping path (outside the electron interferometer). The
electron can arrive at detector D− because the positron, by crossing into the electron interfer-
ometer, destroys the interference between the overlapping and nonoverlapping electron paths.
The positron can arrive at detector D+ because our sensor destroys the interference between
the overlapping and nonoverlapping positron paths. There is no paradox!”

SAGR. And if we don’t place any sensor?
SIMP. “We can talk only about what we measure.”
SALV. If we think classically, we can talk only about what we measure. But consider the

weak values of Π−
no, Π−

o , Π+
no and Π−

o and their products, where Π−
no projects onto the state

|no〉−, etc. The simultaneous clicking of D− and D+ defines the postselected state, and we
obtain 〈Π−

noΠ
+
no〉w = −1, 〈Π−

noΠ
+
o 〉w = 1, and 〈Π−

o Π+
no〉w = 1. Also 〈Π−

o Π+
o 〉w vanishes,

thus the electron and positron never take their overlapping paths together. Yet each particle
takes its overlapping path separately, because 〈Π−

o 〉w = 〈Π−
o Π+

no〉w + 〈Π−
o Π+

o 〉w = 1 and
〈Π+

o 〉w = 〈Π−
noΠ

+
o 〉w + 〈Π−

o Π+
o 〉w = 1.

SIMP. What are you saying, that one electron-positron pair can show up simultaneously,
in various guises, on three different pairs of paths? I can’t accept that.

SALV. Can’t you? Well, then, can you accept that one positively charged coin can show
up simultaneously, in various guises, under three shells?3

SIMP. Yes, I can. But now I see no reason to accept one and not the other.

17.5 Complex Weak Values

Weak values need not be real. So far, in applying weak values to entanglement, we have
encountered real weak values. But Sect. 16.5 gives an example of an imaginary weak projector
in the quantum shell game. Here we present an example of how imaginary weak values and
entanglement can go together. The example – a calculation of the vector potential of a dipole
of imaginary strength – is at first puzzling and even seems to contradict relativistic causality.
Yet there is no contradiction.

Suppose two equal and opposite charges separate only at time t = 0, making an instanta-
neous dipole. We can write the charge and current densities of the dipole as follows [5]:

ρ(x, t) = eσzδ(x)δ(y)δ′(z)δ(t) ,
Jx(x, t) = 0 ,
Jy(x, t) = 0 ,
Jz(x, t) = − eσzδ(x)δ(y)δ(z)δ′(t) . (17.6)

The spin operator σz governs the direction of the dipole (which charge moves up the z-axis and
which moves down) and e is the magnitude of the charge. Equation (17.6) obeys the continuity

2See Sect. 17.1.
3See Sect. 16.5.
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equation,4 ∇ · J + ∂ρ/∂t = 0. We can pre- and postselect the states of the spin to get real
and imaginary weak values 〈σz〉w. Then, since this weak value multiplies the charge e, we
effectively couple the electromagnetic field to a dipole of real or imaginary strength.

What is the electromagnetic field of the dipole? The HamiltonianH for the electromagnetic
field coupled to localized charge and current densities is (in the Coulomb gauge)

H =
∑
k

�ωa†
k · ak

− 2
√
π�

L3/2

∑
k

1√
2ω

∫ [
ake

ik·x + a†
ke

−ik·x
]

· J(x)d3x+
1
2

∫
ρV d3x , (17.7)

with ω = ck; we neglect the ground state energy of the modes. (See Eq. (8.19) and Prob.
8.10.) In the Coulomb gauge, V is not a degree of freedom; it is the instantaneous Coulomb
potential of the charge distribution ρ(x, t). The degrees of freedom are the modes ak. From
Eqs. (17.6–7) we obtain the Heisenberg equation of motion for ak:

d

dt
ak = i[H,ak]/�

= − iωak − i(2π/�ωL3)1/2
[∫

J(x) · a†
ke

−ik·xd3x , ak

]

= − iωak − iδ′(t)eσz(2π/�ωL3)1/2(ẑ − k̂ · ẑ k̂) . (17.8)

The mode a†
k is transverse (a†

k · k = 0), and the transverse part of ẑ is ẑ − k̂ · ẑ k̂. Hence the
appearance of ẑ − k̂ · ẑ k̂ instead of ẑ in Eq. (17.8). If we assume that ak vanishes for times
t < 0, the solution of Eq. (17.8) is

ak(t) = [−iδ(t) − ωe−iωtΘ(t)]eσz(2π/�ωL3)1/2(ẑ − k̂ · ẑ k̂) ,

where Θ(t) is the Heaviside function Θ(t) = 1/2+t/2|t| and dΘ/dt = δ(t). (See Prob. 17.7.)
We can now calculate A(x) by substituting ak(t) into the Fourier expansion for A(x):

A(x) =
2c

√
π�

L3/2

∑
k

1√
2ω

[
ake

ik·x + a†
ke

−ik·x
]
.

(See Prob. 8.10(a).) The modes ak and a†
k contain the operator σz which, we assume, has

weak value 〈σz〉w. We will calculate A(x) for 〈σz〉w real and for 〈σz〉w imaginary. For 〈σz〉w
real and t > 0 we have

A(x, t) = −4πce〈σz〉w
L3

∑
k

(ẑ − k̂ · ẑ k̂) cos(ωt)eik·x . (17.9)

4Equation (17.6) leads to divergences, artifacts of the δ-functions in ρ(x, t) and Jz(x, t). We can avoid these

divergences by defining δ(x)δ(y)δ(z)δ(t) = (c/π2D4)e−(x2+y2+z2+c2t2)/D2
for nonzero D.
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The limit L → ∞ turns the sum L−3 ∑
k into the integral (2π)−3

∫
d3k, and

A(x, t) = − ce〈σz〉w
2π2

∫
(ẑ − k̂ · ẑ k̂) cos(ckt)eik·xd3k ,

=
ce〈σz〉w

2π2

(
ẑ
c2

∂

∂t2
− ∇ ∂

∂z

)∫
cos(ckt)
k2 eik·xd3k ,

=
ce〈σz〉w

2π2

(
ẑ
c2

∂

∂t2
− ∇ ∂

∂z

)
2π

∫ ∞

0

∫ π

0
cos(ckt)eikr cos θ sin θdθdk ,

=
2ce〈σz〉w

π

(
ẑ
c2

∂

∂t2
− ∇ ∂

∂z

)∫ ∞

0
cos(ckt)

sin(kr)
kr

dk ,

where r = |x|. Integration yields

A(x, t) = ce〈σz〉w
(

ẑ
c2

∂

∂t2
− ∇ ∂

∂z

)
1
r
Θ(r − ct) . (17.10)

Equation (17.10) is, indeed, the classical solution. The solution is causal: the fields E =
−∇V − (1/c)∂A/∂t and B = ∇A are nonzero only for r = ct.

But if 〈σz〉w is imaginary, then instead of Eq. (17.9) we have

A(x, t) = −i4πce〈σz〉w
L3

∑
k

(ẑ − k̂ · ẑ k̂) sin(ωt)eik·x . (17.11)

Equation (17.11) differs from Eq. (17.9) only in the replacement of cos(ωt) with i sin(ωt). So
we immediately have

A(x, t) = i
2ce〈σz〉w

π

(
ẑ
c2

∂

∂t2
− ∇ ∂

∂z

)∫ ∞

0
sin(ckt)

sin(kr)
kr

dk ,

which integrates to [6]

A(x, t) = ice〈σz〉w
(

ẑ
c2

∂

∂t2
− ∇ ∂

∂z

)
1
πr

ln
∣∣∣∣r + ct

r − ct

∣∣∣∣ . (17.12)

The minor change from cos(ωt) to i sin(ωt) implies a major change in A(x, t): Eq. (17.12)
shows that A(x, t) is noncausal, i.e. it is nonzero both inside and outside the light cone of
the dipole. The same is true of E(x, t) and B(x, t). For t < 0 the field of the imaginary
dipole vanishes everywhere, but for t > 0, it does not vanish anywhere. The imaginary dipole
violates relativistic causality!

This violation is a paradox. We used simple quantum electrodynamics to calculate the
dipole field. Quantum electrodynamics is relativistic and causal, so how could the calculation
violate relativistic causality? Perhaps the violation disappears when we average over post-
selections. For example, let the initial spin state be (| ↑〉 + | ↓〉)/√2. If the final state is
(| ↑〉 + i| ↓〉)/√2, the weak value of σz is 〈σz〉w = i. If the final state is (i| ↑〉 + | ↓〉)/√2,
then 〈σz〉w = −i and A(x, t) is the negative of Eq. (17.12). Since the probability of both final
states is 1/2, the field A(x, t) vanishes when we average over them. Yet averaging does not
resolve the paradox of a single imaginary dipole.
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Relativistic causality forbids superluminal messages. Suppose that Alice, in her laboratory,
creates an imaginary dipole via pre- and postselection. Bob, in his laboratory, can measure the
field A(x, t) at a spacelike separation from the dipole. Can Alice send a superluminal message
to Bob? She cannot, and the reason is similar to the reason that the Cherenkov radiation of a
charge moving with weak superluminal speed is consistent with causality. (See Sect. 16.7 and
Prob. 16.16.) Alice obtains the weak value 〈σz〉w = i only if any measurement that couples to
σz is also weak. If e, the magnitude of the charge, is too large, the HamiltonianH in Eq. (17.7)
will not contain 〈σz〉w in the current Jz(x, t), but rather one of the eigenvalues of σz . Then
any noncausal field that Bob measures must be a fluctuation of the vacuum. Indeed, the field
and the vacuum are not orthogonal, when both are restricted to the finite spacetime region that
Bob measures [7]. If e is not too large, then H contains 〈σz〉w = i and Bob measures the
noncausal field A(x, t) in Eq. (17.12). But Bob cannot tell from his measurements what Alice
did in her laboratory; as far as he knows, the field he measures could be a fluctuation of the
vacuum. The nonlocal correlations in A(x, t) show up only when he and Alice compare their
measurements.

Is this resolution complete? The field A(x, t) of an imaginary dipole is noncausal, while
the field of a real dipole is causal. If noncausal fields are useless for sending superluminal
messages, why are the fields of real dipoles causal? The complete resolution of the paradox
takes unitarity into account [8]. In Eq. (17.7), H becomes an effective Hamiltonian Heff

when we substitute 〈σz〉w for σz . If 〈σz〉w is real, Heff generates unitary evolution. If
〈σz〉w is not real, Heff generates nonunitary evolution, which can alter nonlocal correlations.
(See Sect. 16.5 and Probs. 16.9–10.) A simple example involves two photons on a line, with
coordinates x1 and x2, in an entangled state

[ψ(x1)ψ(x2 − L) + ψ(x1 − a)ψ(x2 − L− a)] /
√

2 ,

where 0 < a � L; assume ψ(x) vanishes unless x ≈ 0. Measurements on this state show
x1 ≈ 0, x2 ≈ L or, with equal probability, x1 ≈ a, x2 ≈ L + a. Suppose the effective
Hamiltonian for the two photons isHeff = 〈σz〉wx1, where x1 is the position operator for the
first photon. Then the state of the photons at time t is

ei〈σz〉wx1t [ψ(x1)ψ(x2 − L) + ψ(x1 − a)ψ(x2 − L− a)] /
√

2 , (17.13)

If 〈σz〉w is real, the relative phase of the terms in Eq. (17.13) changes over time, but measure-
ments still show x1 ≈ 0, x2 ≈ L or x1 ≈ a, x2 ≈ L+ a with equal probability. But if 〈σz〉w
is not real, Eq. (17.13) approaches either ψ(x1)ψ(x2 −L) or ψ(x1 − a)ψ(x2 −L− a). Thus
a complex effective Hamiltonian can change probabilities nonlocally, just as a measurement
on one photon can change probabilities for the other. Neither the complex Hamiltonian nor
the photon measurement violates causality; but applied to entangled states, both can change
probabilities nonlocally. (See also Prob. 3.11.)

This explanation might not seem to apply to the imaginary dipole. The vacuum state |0〉
is a product state: it is the product of the ground states of all the modes ak,i. But these
ground states are nonlocal (momentum) states, extending over all of space. In a basis of local
(position) states, the vacuum is a highly entangled state. To check that the vacuum is entangled
in position, we can calculate the spatial correlations of A. We define

A(x1) = π−3/2D−3
∫
e−(x−x1)2/D2

A(x)d3x , (17.14)
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and calculate the vacuum correlation of A(x1) and A(x2). (The vacuum correlation of A(x1)
and A(x2) diverges, hence we consider the correlation of A(x1) and A(x2) instead.) Since
〈0|A(x1)|0〉 = 0 = 〈0|A(x2)|0〉, the vacuum correlation is

〈0|A(x1)A(x2)|0〉 ,
and this vacuum correlation does not vanish as it would if the vacuum were a product of local
position states. (See Prob. 17.10.)

Problems

17.1 Section 6.4 defines a parity operatorP for a photon passing through the Mach-Zehnder
interferometer. For the electron and positron in Sect. 17.1, define two analogous parity
operators, P− and P+, respectively. Let the initial state of the particles be

1
2
[
eiα+ |no〉+ + |o〉+

]⊗ [
eiα− |o〉− + |no〉−

]

in the notation of Sect. 17.1.
(a) Show that the expectation values of P−, P+ and P−P+ in the initial state are

〈P−〉 = cosα− , 〈P+〉 = cosα+ , 〈P−P+〉 = cosα− cosα+ .

(b) Show that if the “bomb” does not explode, the corresponding expectation values
for the particles are

〈P−〉 =
2
3

cosα− , 〈P+〉 =
2
3

cosα+ , 〈P−P+〉 =
2
3

cos(α− + α+) .

∗17.2 (a) For the states |Ψin〉, |Ψfin〉 and projectors Π1, Π2 of Sect. 17.2, apply the ABL
formula, Eq. (10.8), to show that an intermediate measurement of the location of the
Cat (or neutron) will find it in the state |2〉, and an intermediate measurement of its
grin (or spin) will find it in the state | ↑〉.
(b) Consider a particle with two internal spin-1/2 degrees of freedom, and correspond-
ing operators σz and σ′

z . Let Π1 and Π2 project the particle onto localized states |1〉
and |2〉, respectively. Find states |Ψin〉 and |Ψfin〉 satisfying the following constraints:
after preselection of |Ψin〉 and before postselection of |Ψfin〉, the particle is certainly
localized to |1〉 and certainly has σz = σ′

z = 1 (according to the ABL formula); but
the weak values of σzΠ1 and σ′

zΠ1 vanish. (Assume that σz , σ′
z , Π1 and Π2 all

commute with the Hamiltonian of the particle.)

17.3 Calculate 〈Π1Π↑〉w, 〈Π1Π↓〉w, 〈Π2Π↑〉w and 〈Π2Π↓〉w for the states |Ψin〉, |Ψfin〉
and projectors Π1, Π2, Π↓ and Π↑ of Sect. 17.2, using only the four weak values
〈σz〉w = 1, 〈Π1〉w = 0, 〈Π2〉w = 1 and 〈Π2σz〉w = 0.

17.4 (a) Calculate the weak values in Eq. (17.5) using the states |Ψin〉 and |Ψfin〉 of
Sect. 17.3.
(b) Now obtain the weak values in Eq. (17.5) using only the three weak values
〈σAy 〉w = −1, 〈σBx 〉w = −1 and 〈σAy σBx 〉w = −1.
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17.5 Suppose the initial state |Ψin〉 of three spins is the GHZ state

|Ψin〉 =
1√
2
[| ↑〉A ⊗ | ↑〉B ⊗ | ↑〉C − | ↓〉A ⊗ | ↓〉B ⊗ | ↓〉C ]

and the final state |Ψfin〉 has all three spins pointing down the x-axis:

|Ψfin〉 =
1

2
√

2
[| ↑〉A − | ↓〉A] ⊗ [| ↑〉B − | ↓〉B ] ⊗ [| ↑〉C − | ↓〉C ] .

The GHZ state |Ψin〉 is an eigenstate of the observables σAx σ
B
y σ

C
y , σAy σ

B
x σ

C
y and

σAy σ
B
y σ

C
x with eigenvalue 1.

(a) Prove

〈σAy σBy 〉w = 〈σBy σCy 〉w = 〈σAy σCy 〉w = −1 . (17.15)

(b) Define projectors ΠA
↑y , ΠA

↓y according to

ΠA
↑y = (| ↑〉A + i| ↓〉A) (A〈↑ | − iA〈↓ |) /2 ,

ΠA
↓y = (| ↑〉A − i| ↓〉A) (A〈↑ | + iA〈↓ |) /2 ,

and likewise for the other two spins. Define also Π+++ = ΠA
↑yΠ

B
↑yΠ

C
↑y , likewise

Π++− = ΠA
↑yΠ

B
↑yΠ

C
↓y and so on. Equation (17.15) is a constraint on the eight weak

values 〈Π+++〉w, 〈Π++−〉w, . . . , 〈Π−−−〉w. Evaluate the eight weak values using
only Eq. (17.15) and symmetry considerations.

17.6 Alice and Bob share pairs of subsystems in an entangled state |Ψ〉; Alice measures
either A or A′ on one subsubsystem of each pair while, far away, Bob measures either
B or B′ on the other. Assume A, A′, B and B′ have finitely many eigenvalues ai,
a′
j , bk and b′l respectively, all nondegenerate and bounded by 1 in absolute magnitude,

and [A,A′] = 0 = [B,B′]. Section 3.4 defines local plans λ with a probability
measure ρ(λ)dλ such that

∫
ρ(λ)dλ = 1. Let us define local plans λijkl such that a

measurement ofA, A′, B orB′ on a pair carrying local plan λijkl yields, respectively,
ai, a′

j , bk or b′l, i.e.

P (A; am;λijkl) = δim , P (B; bn;λijkl) = δkn ,

and

P (A,B; am, bn;λijkl) = P (A; am;λijkl)P (B; bn;λijkl) = δimδkn .

(Compare Eq. (3.10).) Define ρ(λijkl) to be |〈ai, bk|Ψ〉|2 times the weak value of
|a′
j , b

′
l〉〈a′

j , b
′
l| between the preselected state |Ψ〉 and the postselected state |ai, bk〉.

Show that
∑
ijkl

ρ(λijkl) = 1
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and that P (A,B; am, bn),

P (A,B; am, bn) =
∑
ijkl

P (A,B; am, bn;λijkl)ρ(λijkl) ,

reproduces the quantum probability that measurements of A and B yield am and
bn, respectively. The local plans λijkl reproduce all the quantum probabilities for
measurements of A, A′, B and B′ on |Ψ〉, in apparent violation of Bell’s theorem.
(See Sect. 3.4.) What is the catch?

17.7 A one-dimensional harmonic oscillator with a driving functionλf(t) has a Hamiltonian

H = (a†a+ 1/2)�ω + λf(t)(a† + a)
√

�/2ω .

(a) Show that the solution of the Heisenberg equation of motion for a is

a(t) = a0(t) − iλ
√

�/2ω
∫ t

−∞
f(t′)e−iω(t−t′)dt′ ,

where a0(t) is any solution of the equation of motion for λ = 0.
(b) If f(t) = δ′(t) and a(t) = 0 for t < 0, show that

a(t) = −iδ(t)λ
√

�/2ω − λ
√
ω/2�e−iωtΘ(t) .

∗17.8 Compute E(x, t) and B(x, t) from A(x, t) in Eq. (17.10) and the potential V due to
the instantaneous charge density ρ(x, t) in Eq. (17.6).

17.9 Starting from the Hamiltonian H in Eq. (8.19), the charge and current densities in

Eq. (17.6), and the commutation relation [A(k)
i ,Π(k′)

j ] = i�(δij − kikj/k
2)δk,k

′
,

derive the Heisenberg equation of motion for A(k):

d2

dt2
A(k) = −ω2A(k) − 2

√
πeσz
L3/2 δ′(t)(ẑ − k̂ · ẑk̂) .

Solve the equation of motion assuming that A(k) vanishes for t < 0.

17.10 Show that the vacuum correlation

〈0|A(x1)A(x2)|0〉

equals (2�c/πr)
∫∞
0 e−k2D2/2 sin(kr)dk, where r = |x1 − x2|. (See Eq. (17.14) for

the definition of A(x1).)

∗17.11 Consider a weak measurement, on the PPS ensemble of Sect. 17.1, of the Coulomb
force between an electron and a positron on the non-overlapping paths of Fig. 17.1.
Show that the weak force is repulsive, although the electron and positron have opposite
charges. (This thought experiment may be feasible with trapped ions [9] or photons
[10] replacing the electron and positron.)
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18 The Quantum World

Planck’s 1900 discovery of quanta opened a “quantum century” of fundamental discoveries in
quantum mechanics. Now a second “quantum century” has opened:

In the nineteenth century, life was transformed by the conscious application of clas-
sical mechanics, in the form of Newton’s equations (and, later, thermodynamics), to
the engines of the industrial revolution. In this century, a similar transformation has
been wrought by electromagnetism, in generating and distributing electric power
and communicating words and pictures across the world at the speed of light, in
what should be seen as a conscious application of Maxwell’s equations. It is easy to
predict that in the twenty-first century it will be quantum mechanics that influences
all our lives [1].

This final chapter looks back on the first quantum century and looks forward, not to applications,
but to fundamental discoveries in the second quantum century.

One fundamental discovery was that many measurements necessarily disturb the measured
system. But measurements of an “eigenoperator” of the system do not; and other measure-
ments that do not disturb the measured system include protective measurements and weak
measurements. (See Chaps. 15–17). One theme of this book is that it is particularly these
measurements – measurements that do not disturb the measured system – that develop our
intuition of quantum mechanics. The weak measurements in the next two sections develop this
intuition further.

A second theme of the book is its demand for simple and physical axioms for quantum
mechanics. Chapter 6 suggests two axioms: causality and nonlocality. Quantum mechanics
may not follow from these two axioms alone. But, starting with Sect. 18.2, this chapter suggests
simple, physical axioms for quantum theory.

18.1 Weak Measurements and Interference

Sections 2.4, 4.1, 15.1 and 16.1 present thought experiments – variations on the two-slit inter-
ference experiment – that challenge complementarity. They get more and more sophisticated,
but they all fail: whenever they show which way the particles go, they fail to show an interfer-
ence pattern, and vice versa. This section presents our most sophisticated thought experiment
yet – and it does not fail! It shows through which slit each particle goes, and it shows an
interference pattern.

The thought experiment includes a weak measurement of an expectation value on a PPS
ensemble. What is the connection between a weak value and an expectation value? Suppose

Quantum Paradoxes: Quantum Theory for the Perplexed. Y. Aharonov and D. Rohrlich
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN 3-527-40391-4
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we have an ensemble of N identical systems in the same initial state |ψ〉. On this ensemble
we measure Ā, the average value of an operator A. If A(i) represents the observable A on the
i-th system, then Ā is

Ā =
1
N

N∑
i=1

A(i) .

The measurement of Ā is naturally weak when N is large, for it is a measurement of A/N on
each system. For a weak measurement of Ā on a PPS ensemble, we postselect the states of
the N systems. We could postselect improbable states. But this time, after the measurement
of Ā, we merely measure the state of each system in an orthonormal basis |1〉, |2〉, |3〉, . . .
and “postselect” whatever basis state we get. Then, since the pre- and postselected states are
product states, the weak value of Ā is the average of the weak values of the A(i),

〈Ā〉w =
1
N

N∑
i=1

〈A(i)〉w ,

and the weak value 〈A(i)〉w depends only on the initial and final states of the i-th system. For
some coefficients ck the preselected state of the systems is

|ψ〉 =
∑
k

ck|k〉 ,

and we postselect N1 of the systems in the state |1〉, N2 of the systems in the state |2〉, and so
on, for some N1 +N2 + · · · = N . The weak value of Ā is then

〈Ā〉w =
1
N

∑
k

Nk
〈k|A|ψ〉
〈k|ψ〉 =

∑
k

Nk
N

〈k|A|ψ〉
ck

. (18.1)

Now, the most probable postselected state will have N1 = |c1|2N systems in the state |1〉,
N2 = |c2|2N systems in the state |2〉, and so on.1 So from Eq. (18.1) we obtain

〈Ā〉w =
∑
k

|ck|2 〈k|A|ψ〉
ck

=
∑
k

c∗k〈k|A|ψ〉 = 〈ψ|A|ψ〉 (18.2)

as the most probable outcome of the measurement of Ā; and the larger N , the smaller are the
expected corrections to Eq. (18.2). That is, the weak value of Ā approaches the expectation
value of A in the initial state |ψ〉.

This connection between a weak value and an expectation value seems straightforward.
But now consider electrons in a two-slit experiment. The state of each electron at time t = 0,
just as it passes through the screen with the two slits, is cL|L〉 + cR|R〉, where |L〉 and |R〉 are
quantum waves emerging from the left and right slits, respectively. At time t = T , the electron

1The weak measurement of Ā does not change this probability distribution. For large N , the probability that a
measurement of A(i)/N changes the state of the i-th system is proportional to 1/N2; the probability that it changes
the state of any system is therefore proportional to 1/N , which vanishes in the limit N → ∞.
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L R Figure 18.1: Electron waves overlap in a two-slit interference
experiment. The row of detectors at the top reveals through
which slit the electron passed; the operator A projects the
wave onto the small rectangle in the overlap of the waves.

strikes a detector that measures its transverse momentum, thus showing through which slit it
passed. (See Fig. 18.1.) That is, the detector projects the state of each electron onto U(T )|L〉
or U(T )|R〉, where U(T ) represents time evolution from t = 0 to t = T . At an intermediate
time 0 < t < T we measure weakly an operator Ā that shows the electron interference pattern.
For example, letA(i) project the transverse position of the i-th electron onto a narrow interval.
Then Ā =

∑
iA

(i)/N is the fraction of theN electrons passing through that transverse interval.
Applying Eq. (18.2) to this experiment, we find that the weak value of Ā is the expectation value
ofA in the state cLU(t)|L〉+cRU(t)|R〉; and if the interval is narrow enough, this expectation
value will correspond to a dark or light strip in the two-slit interference pattern. We could map
out the whole interference pattern by transversely moving the interval onto which A projects,
or (for fixed A) by changing the relative phase between U(t)|L〉 and U(t)|R〉. Either way, we
obtain the interference pattern that corresponds to the state cLU(t)|L〉 + cRU(t)|R〉, and we
also observe through which slit each electron passed.

We can simplify the experiment by restricting it to a line (i.e. to the transverse coordinate).
We prepare the first electron on a line in the initial state cL|L〉 + cR|R〉, where |L〉 is a wave
packet coming from the left, and |R〉 is a wave packet coming from the right with the opposite
momentum. When the two wave packets meet and overlap, we measure their interference
pattern via a weak measurement of A(1)/N , where A(1) projects the state of the first electron
to an interval within the overlap region. After the wave packets separate, we check whether the
electron is in the state |L〉 or |R〉 (which way it is moving). We then send in the second electron
in the same initial state, measureA(2)/N , and check whether it is in the state |L〉 or |R〉; and so
on with the other electrons, until we have measured 〈Ā〉 on N electrons. We thus measure the
final direction of each electron and also the intensity of the superposition cL|L〉+ cR|R〉 in the
interval onto which Ā projects. By moving this interval and measuring again, we eventually
map out the entire interference pattern.

Is this thought experiment a paradox? On the one hand, the previous thought experiments
confirmed the intuition that “it is impossible to design an apparatus to determine which hole
the electron passes through, that will not at the same time disturb the electrons enough to
destroy the interference pattern” [2]. On the other hand, we have developed the intuition that a
weak measurement on a PPS ensemble tells us about both the pre- and the postselected states
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– here, about the interference pattern and about the final direction of motion of each electron.
The thought experiment (which does not contradict any uncertainty relations, either for the
electrons or for the screen) bears out this intuition.

But it is a paradox. Bohr argued that Einstein’s thought experiments in Sect. 2.4 must fail –
and we argued that the thought experiments of Sects. 4.1, 15.1 and 16.1 must fail – if quantum
theory is consistent. How can quantum mechanics be consistent if this experiment succeeds
where the others fail? If each electron passes through one slit, how can there be an interference
pattern? Suppose we insert a line of magnetic flux between the slits. The magnetic flux shifts
the interference pattern. But how can it, if each electron passes only on one side of the flux line?
We might suspect that the weak measurement changes the direction of some of the electrons
but, as noted above, the probability that the state of any electron changes vanishes in the limit
N → ∞.

18.2 From Amplitudes to Probabilities

One of the axioms of quantum theory is the Born [3] probability rule: Let A be a Hermitian
operator with eigenvalues ak and corresponding orthonormal eigenstates |k〉. The probability
that a measurement of A on a system in the state |ψ〉 yields the eigenvalue ak is |〈k|ψ〉|2.
(For simplicity we take A nondegenerate.) A number of physicists [4] claim to have derived
this axiom from a weaker axiom, the axiom of collapse: the measurement of A collapses the
state to one of the eigenstates of A. The axiom of collapse is weaker in that it assumes that a
measurement of A on N identical systems prepared in the state |ψ〉 leaves N1 of them in the
state |1〉, N2 of them in the state |2〉, and so on; but it does not assume anything else about the
Nk except that N1 +N2 + · · · = N . Other physicists [5] dispute this claim. To test this claim
we analyze [6] here a weak measurement of A.

As in the previous section, we consider an ensemble of N identical systems preselected in
an initial state |ψ〉, where

|ψ〉 =
∑
k

ck|k〉

and the |k〉 are an orthonormal basis of states. The only change is that here we assume that the
basis states |k〉 are eigenstates of A:

A|k〉 = ak|k〉 .
The eigenvalues ak are still arbitrary. On these N systems we measure Ā, which is naturally
weak when N is large:

Ā =
1
N

N∑
i=1

A(i) ;

againA(i) represents the observableA on the i-th system. For the weak measurement of Ā we
prepare a measuring device in an initial state |Φd〉 and couple it to the measured systems via
an interaction Hamiltonian Hint,

Hint = g(t)PdĀ ,
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where [Qd, Pd] = i� and Qd is the displacement of a pointer on the measuring device. It is
convenient to let g(t) be impulsive and

∫
g(t)dt = 1. After the weak measurement of Ā we

conclude the experiment with a strong (precise) measurement of A on each system. Again we
postselect whatever we get, so that the postselected state of the systems is a product state with
N1 systems in the state |1〉, N2 systems in the state |2〉, and so on, whereN1 +N2 + · · · = N .

Immediately after the weak measurement, the state of the measuring device and systems is

e−iPdĀ/�|Ψin〉 ⊗ |Φd〉 , (18.3)

where we define

|Ψin〉 =
N⊗
i=1

|ψ〉i .

In Eq. (18.3) we have neglected the Hamiltonians of the measured systems and the measuring
device separately, since g(t) is impulsive. By factoring the time evolution operator, we can
rewrite Eq. (18.3) as

(
N⊗
i=1

e−iPdA
(i)/N�|ψ〉i

)
⊗ |Φd〉 . (18.4)

We expand the exponential in Eq. (18.4) in powers of 1/N :

e−iPdA
(i)/N� = 1 − i

N�
PdA

(i) + O
[

1
N2

]
. (18.5)

Part (a) of Prob. 3.10 states that

A|ψ〉 = 〈A〉|ψ〉 + ∆A|ψ⊥〉 ,

where 〈A〉 is the expectation value of A in the state |ψ〉, ∆A = (〈A2〉 − 〈A〉2)1/2 and |ψ⊥〉 is
a normalized state orthogonal to |ψ〉. Then Eq. (18.5) applied to |ψ〉i yields

e−iPdA
(i)/N�|ψ〉i =

[
1 − i

N�
Pd〈A〉

]
|ψ〉i − i

N�
Pd(∆A)|ψ⊥〉i + O

[
1
N2

]
. (18.6)

For the product state |Ψin〉 we obtain, to the same order,

e−iPdĀ/�|Ψin〉 =
[
1 − iPd〈A〉

N�

]N [
|Ψin〉 − iPd∆A

�
√
N

N∑
i=1

|Ψ⊥
i 〉√
N

]
+O

[
1
N2

]
, (18.7)

where |Ψ⊥
i 〉 represents the i-th system in the state |ψ⊥〉 and all other systems in the state

|ψ〉. Since 〈Ψ⊥
i |Ψ⊥

j 〉 = δij , the expression
∑
i |Ψ⊥

i 〉/√N in Eq. (18.7) is normalized, as is
|Ψin〉. Thus for largeN , the sum in Eq. (18.7) is a small perturbation on |Ψin〉, and Eq. (18.7)
approaches e−iPd〈A〉/�|Ψin〉. The larger N , the weaker the measurement of Ā, and the less
the measurement disturbs |Ψin〉.
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After the weak measurement, the state of the systems collapses to a direct product of
eigenstates of A; the final state |Ψfin〉 is a product state of N1 systems in the state |1〉, N2
systems in the state |2〉, and so on, where N1 + N2 + · · · = N . What is the state of the
measuring device? On the one hand, Eq. (18.7) implies that the position of the pointer has
changed by 〈A〉 (if we can neglect the corrections to e−iPdĀ/�|Ψin〉). On the other hand, we
can calculate the shift in the pointer directly from the inner product of |Ψfin〉 and Eq. (18.3)
by applying eiPdĀ/� to |Ψfin〉. Since A takes the value a1 on N1 of the systems, the value a2
in N2 of the systems, and so on, the pointer shifts by (N1a1 + N2a2 + . . . )/N . These two
calculations of the shift must agree, hence

N1

N
a1 +

N2

N
a2 + · · · = |c1|2a1 + |c2|2a2 + . . . ;

and since the eigenvalues a1, a2, . . . of A are arbitrary, we conclude that N1/N = |c1|2,
N2/N = |c2|2, and so on. The fractionNk/N of systems on which a measurement ofA yields
ak approaches |ck|2 in the limit N → ∞, and we recover the Born probability rule.

But can we neglect of the corrections to e−iPdĀ/�|Ψ〉? If, for example, N1 = N in the
final state, we do not recover the Born probability rule. The inner product of this final state
with the corrections does not vanish. On the contrary: for final states |Ψfin〉 that violate the
Born rule, the inner product

N∑
i=1

〈Ψfin|Ψ⊥
i 〉/

√
N (18.8)

does not vanish for large N ; instead of cancelling one another, the terms in the sum add
coherently and Eq. (18.8) is proportional to

√
N . (See Prob. 18.1.)

Thus the axiom of collapse is not sufficient. What we require is an axiom of stable collapse.
Our thought experiment proceeds from an initial state |Ψin〉 ⊗ |Φd〉 via a weak measurement
of Ā to projection onto |Ψfin〉. An arbitrarily small perturbation of the initial state should not
induce a measurable change in Ā. (If it did, we could never measure Ā, for an arbitrarily small
perturbation of the initial state would change the result of the measurement.) Thus we must
assume that the variation in the measured value of Ā due to the variation

|Ψin〉 → (1 + ε2)−1/2 [|Ψin〉 + ε|Ψ⊥
in〉

]

vanishes as ε vanishes, for any normalized |Ψ⊥
in〉 orthogonal to |Ψin〉.

Now consider the initial state |Ψin〉 = |ψ〉1 ⊗ · · · ⊗ |ψ〉N expanded in an orthonormal
basis of eigenstates of A(1), A(2), . . . , A(N) i.e. in an orthonormal basis of such states as
|3〉1 ⊗|5〉2 ⊗· · ·⊗ |2〉N , etc. For every such basis state there is a set of values forN1,N2, . . . .
Let |ΨT

in〉 be a truncation of |Ψin〉 to basis states which have Ni = c∗i ciN + O(
√
N) for all

i. For N large enough, |ΨT
in〉 is an arbitrarily small perturbation of |Ψin〉, yet |ΨT

in〉 projects
onto only those final states |Ψfin〉 that are consistent with the Born rule. (See Prob. 9.5.) The
axiom of stable collapse then implies that also in our thought experiment, with |Ψin〉 and not
|ΨT
in〉 as the initial state, the final state |Ψfin〉 must be consistent with the Born rule. Thus we

obtain the Born rule from a weaker axiom, the axiom of stable collapse.
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18.3 The Fate of the Universe

Chapter 9 presents the paradox of Schrödinger’s cat, and some proposed resolutions. These
resolutions, while consistent with experiment, are overgrown with redundant physical quanti-
ties. Can we apply Occam’s razor to the overgrowth? The most overgrown resolution is the
Many Worlds interpretation, with its infinity of worlds. Other resolutions add assumptions to
quantum theory without adding anything to its predictions. Collapse and hidden variables re-
solve the paradox by completing quantum theory (if quantum theory is incomplete) but no one
has observed collapse,2 and hidden variables are in principle unobservable. These additional
assumptions are reminiscent of the aether assumption; like the aether, collapse and hidden
variables seem to have a place in theory, but no place in experiment. (See Sect. 1.4.)

A different way to resolve the paradox is to impose final boundary conditions on the
universe. (See Sects. 9.4 and 10.5.) In effect, we impose final boundary conditions on the
Many Worlds interpretation, to postselect just one world. In the Many Worlds interpretation,
a world is a macroscopic state of all measuring devices, relative to a state of all measured
systems; now we impose a final boundary condition by postselecting a macroscopic state.
Why postselect a single macroscopic state? We could postselect a superposition of macroscopic
states. For example, we could postselect a superposition of two macroscopic states, and get a
“Two Worlds” interpretation of quantum theory. However, we have no reason to select such a
superposition, for it would decohere. (See Sect. 9.4.) Recall the role that decoherence plays
– what it can do and what it cannot do. Decoherence reduces an entangled state of measuring
devices, measured systems, and their environment to a mixture of macroscopic states, i.e. to
a mixture of states in which pointers all have well defined positions. Decoherence can thus
determine the basis in which an entangled state reduces to a mixture. Decoherence cannot
select a state (an actual measurement outcome) from the mixture (of possible measurement
outcomes). But final boundary conditions can do that.

The paradoxes of Sect. 14.1, as well, motivate final boundary conditions. Figure 14.4
shows two particles in a singlet state |Ψ−〉 = (| ↑↓〉 − | ↓↑〉)/√2. Alice, at spacetime point
a, measures the spin component of one of them along some axis. In the Lorentz frame of
Fig. 14.4, Alice’s measurement fixes the spin component of the other particle at b. But in the
Lorentz frame of Fig. 14.5, b precedes a; hence the spin component of the particle at b fixes the
spin component of Alice’s particle before she measures it. This paradox suggests that Alice’s
measurement at a is a future boundary condition on her particle before a.

So let two states describe the universe [7]. Formally, we have an initial or history state
|Ψhis〉 at time tin and a final or destiny state |Ψdes〉 at time tfin as the initial and final boundary
conditions on the universe. The times tin and tfin need not be the initial and final times of
cosmology. Since the time evolution of |Ψhis〉 and |Ψdes〉 is unitary, tin can be any time before
the first measurement and tfin can be any time after the last measurement. Let us choose, as
an example of a history state at time tin, a product of a single spin-1/2 state a| ↑〉 + b| ↓〉, an
initial state |0〉d of a measuring device, and an initial state |0〉env of their environment. At time

2The SL and CSL models make testable predictions that differ from the predictions of quantum mechanics. (See
Sect. 9.2.) Experiments have not confirmed these predictions; but if future experiments do so, the conclusion of this
paragraph will be invalid.
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t1 the measuring device measures the spin state; the history state becomes

|Ψhis(t1)〉 = a| ↑〉 ⊗ | ↑〉d ⊗ |0〉env + b| ↓〉 ⊗ | ↓〉d ⊗ |0〉env ,

where the states | ↑〉d and | ↓〉d of the measuring device correspond to the outcome of the
measurement. (To simplify the example, we suppose that the only nonzero terms in the Hamil-
tonian are the terms for the interaction of the measuring device with the spin and with the
environment.) The measuring device, which is macroscopic, is not isolated from the environ-
ment; after a short decoherence time it becomes entangled with the environment, so that at
some later time t2, the history state is

|Ψhis(t2)〉 = a| ↑〉 ⊗ | ↑〉d ⊗ | ↑〉env + b| ↓〉 ⊗ | ↓〉d ⊗ | ↓〉env ,

where now the states | ↑〉env and | ↓〉env of the environment show the dependence of the
environment on the outcome of the measurement. The states | ↑〉env and | ↓〉env represent
the degrees of freedom of the environment, which are beyond experimental control. All
informatiom about the relative phase of | ↑〉d and | ↓〉d is lost via decoherence of these degrees
of freedom. Thus decoherence determines the basis of macroscopic states | ↑〉d and | ↓〉d of
the mixture that evolves from the measurement. For the destiny state at time tfin > t2 we
define

|Ψdes〉 = | ↑〉d ⊗ | ↑〉env .

The destiny state determines the states of the measuring device and the environment, i.e. the
states that record the outcome of the measurement at time t2. (For simplicity, we can assume that
the measuring device is not used again after time t2.) The destiny state selects from the history
state at time t2 just the state | ↑〉d⊗| ↑〉env of the measuring device and the environment. (The
final state of the spin may depend on subsequent interactions with other measuring devices.)
In this way, final boundary conditions on the universe complete the account of the measuring
process.

The previous section discusses the axiom of stable collapse. If this axiom holds, quantum
measurements will follow the Born rule. If it does not hold, measurements will not always
follow the Born rule. (See Prob. 18.2.) So a failure of the Born rule would be evidence for
unstable collapse and “improbable” final boundary conditions. Also, if weak measurements
on a preselected, but not postselected, ensemble yield weak values, we would interpret them
as evidence for “improbable” final boundary conditions.

The two-state formalism is a minimal resolution of the paradox of Schrödinger’s cat. It does
not require a collapse mechanism. It simply equalizes the status of initial and final boundary
conditions on the universe. We conclude from the discussion in Sect. 10.5, however, that
the final boundary conditions are qualitatively different from the initial boundary conditions.
The state |Ψdes(tfin)〉 records, in one fashion or another, the result of every measurement
ever made. The record could include pointers on measuring devices, notations in a laboratory
notebook, and memories. The records could even be lost; but under unitary time evolution, no
information is lost. Thus in |Ψdes(tfin)〉, systems that once interacted and have since separated
remain entangled. By contrast, initial boundary conditions do not record anything; the initial
state |Ψhis(tin)〉 is not entangled. The evolution is reversible, but not symmetric, in time.
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Final boundary conditions resolve also the paradox of Lorentz invariance and collapse.
(See Chap. 14.) In the two-state formalism, uncertainty about the outcome of a measurement
is due to our ignorance of final boundary conditions. Hence our ignorance about the outcome
of a measurement is like our ignorance about how a coin falls – “heads” or “tails” – before we
look at it. There is no nonlocal collapse, because there is no collapse (only a final boundary
condition); consequently, there is also no conflict with Lorentz invariance. This resolution of
the paradoxes of Chaps. 9 and 14 extends automatically to relativistic quantum theory.

This resolution is consistent with causality only because most of |Ψdes〉 is unknown, most
of the time. In this respect, the two-state formalism is similar to Bohm’s theory of hidden
variables. Bohm’s hidden variables must be hidden because otherwise we could use them to
send superluminal signals. Similarly, if the destiny state were not partly hidden, we could
send superluminal signals. For example, let Alice and Bob share a pair of spins in the state
(| ↑〉A ⊗ | ↑〉B +| ↓〉A ⊗ | ↓〉B)/

√
2, where | ↑〉A, | ↓〉A are states of a spin in Alice’s

laboratory and | ↑〉B , | ↓〉B are states of a spin in Bob’s. Alice and Bob adopt the following
protocol: at time t = 0 (as they measure time) Alice may or may not flip her spin. Next, Bob
checks whether his spin is in the state | ↑〉B or | ↓〉B . Suppose that the destiny state shows the
subsequent state of their spins to be | ↑〉A⊗ (| ↑〉B + | ↓〉B)/

√
2. If Alice could anticipate this

part of the destiny state, she could deliberately change the outcome of Bob’s measurement by
flipping her spin; thus she could send Bob a superluminal signal. From this example we see
that causality requires the destiny state to be at least partly hidden.

The two-state formalism and Bohm’s theory of hidden variables share another property:
determinism. But the determinism of the two-state formalism is radically different from de-
terminism as usually understood, for while |Ψhis〉 evolves deterministically forward in time,
|Ψdes〉 evolves deterministically backward in time. Neither |Ψhis〉 nor |Ψdes〉 alone has any
effect; an effect is the product of causal chains that extend from both the future and the past.
In this formalism, old paradoxes of free will and determinism have a new solution. On the one
hand, free will has to mean that our choices are not determined by our past. What is free will,
if not freedom from the past? Such freedom has a place in the two-state formalism, because
the history state |Ψhis〉 by itself indeed does not determine the present. On the other hand, no
one can expect to be free of the future. In the two-state formalism the past does not determine
the future, yet the future is determined. This juxtaposition of free will and determinism recalls
the classic Hebrew aphorism, “All is foreseen, yet choice is given” [8]; see also the work of
Price [9].

18.4 The Role of h--

In searching for simple, physical axioms for quantum theory, we work from within quantum
theory and from without. From within quantum theory, we seek a mechanics that directly
expresses its physical content; and from without, we seek axioms that imply, directly or indi-
rectly, just this physical content. In this section we work from within, formulating a mechanics
in which modular variables play a role; in Sect. 18.6 we work from without, finding axioms
that imply modular variables in this role.

Can there be a quantum theory without quantum states? Every quantum state is the eigen-
state of some operators; we can therefore map a state to a set of operators. Now consider the



274 18 The Quantum World

set of all Hermitian eigenoperators of a state |ψ〉, i.e. all Hermitian operators having |ψ〉 as an
eigenstate. The set is algebraically closed in the sense that if Aψ and A′

ψ are eigenoperators
of the state |ψ〉, then so areAψ +A′

ψ andAψA′
ψ . The unique eigenstate of all the operators in

this set is |ψ〉. (See Prob. 18.3.) In this sense, we can replace |ψ〉 with the set of all Aψ . We
can also define the set of all operators that transform |ψ〉 to a state orthogonal to |ψ〉. These
two sets span the space of all operators.

The equation of motion for Aψ is the Heisenberg equation of motion

dAψ
dt

=
i

�
[H,Aψ] +

∂Aψ
∂t

, (18.9)

so the value of Aψ at one time determines its value at all times. Once measured, the Aψ are
known at all times; the operators in the second set are unknown at all times, because they all
transform |ψ〉 into some state orthogonal to |ψ〉 and so their expectation values in the state
|ψ〉 all vanish. The set of completely known operators is maximal in that any operator that
commutes with all the Aψ is already in the set.

Suppose now that the only observables that we measure, on a system in the state |ψ〉, are
the eigenoperatorsAψ , i.e. those for which the eigenvalues are (or will be) completely known.
If we restrict ourselves to observables in this set, we never disturb the measured system and
there is no uncertainty in our measurements. The evolution of the operators is completely
deterministic. The boundary conditions on this evolution are just the eigenvalues of the Aψ ,
so there is no longer any need for the state of the system. Thus, by restricting measurements
to the maximal set of Aψ , we eliminate states, uncertainties and probabilities from quantum
theory. The restriction to measurements of the Aψ is, of course, artificial. We might guess
that there is no quantum theory left in this restricted theory; there is no collapse, and all that
remains of the dynamics is the equation of motion, Eq. (18.9), which is the formal analogue of
the classical equation of motion. Yet this restricted theory will surprise us: it is still quantum
theory!

To see how the restricted theory works, consider a Hamiltonian H for a spinning particle
constrained to the z-axis:

H = p2
z/2m− g(t)µSzBz .

For simplicity we take g(t) to be impulsive: g(t) vanishes except for a brief time interval
0 ≤ t ≤ T when it equals 1/T . During this interval the magnetic field along the z-axis equals
Bz, where B (like µ) is a constant.3 The equations of motion obtained from H are

dz/dt = pz/m , dpz/dt = g(t)µSzB ,

and

dSx/dt = g(t)µBzSy , dSy/dt = −g(t)µBzSx , dSz/dt = 0 .

If T is small, we can neglect the change in z during the interval 0 ≤ t ≤ T and calculate

pz(T ) = µSzB + pz(0) (18.10)

3As in Sect. 7.2, the magnetic field must fringe away from the z-axis so as to satisfy Maxwell’s equation ∇ · B = 0.
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and

Sx(T ) = Sx(0) cos(µBz) + Sy(0) sin(µBz) ,
Sy(T ) = Sy(0) cos(µBz) − Sx(0) sin(µBz) ; (18.11)

Sz does not change. Suppose that pz(0) is an approximate eigenoperator with eigenvalue 0,
and ∆pz(0) is small. Consider two possible initial boundary conditions for the spin. On one
hand, if Sz(T ) = Sz(0) is one of the known observables, then from Eq. (18.10) we conclude
that the particle accelerates in the direction of its spin, like atoms in a Stern-Gerlach apparatus.
Equations (18.11) say nothing since Sx(0) and Sy(0) are completely unknown. On the other
hand, if Sx(0) is a known observable, we solve Eqs. (18.11) for Sx(0) to obtain

Sx(0) = Sx(T ) cos(µBz) − Sy(T ) sin(µBz) . (18.12)

Equation (18.12) indicates correlations between the modular position zmod = z mod 2π/µB
and the spin components Sx(T ) and Sy(T ). For example, if at time T we find the particle
at one of the points zmod = 0, we are sure to find Sx(T ) = Sx(0). If at time T we find the
particle at one of the points zmod = π/4µB, we are sure to find Sx(T ) − Sy(T ) =

√
2Sx(0).

But so far the motion is classical, whether we choose Sz(0) or Sx(0) as the known observable.
The surprise comes when we consider modular angular momentum. The operator

eiπ(Lx+Sx)/� (18.13)

effects a rotation of π around the x-axis. This rotation, which sends z → −z, pz → −pz
and Sz → −Sz , commutes with H and is thus a constant of the motion. It does not commute
with Sz , so if Sz(0) is one of the known observables, then the modular angular momentum
(Lx + Sx) mod 2� is completely unknown. But it does commute with Sx, so if Sx(0) is one
of the known observables, then the modular angular momentum is known at all times.

Modular angular momentum is an observable with no classical analogue; it reveals nonlocal
relative phases. For example, we know from Eq. (18.10) that pz(T ) and Sz are correlated in
sign, for pz(T ) = pz(T ) − pz(0) = µSzB. But how do we know, if we measure Sx(0) and
not Sz , about the relative phase between terms with different values of Sz and pz? We can
rephrase the question by returning for a moment to the Schrödinger formulation and specializing
to spin-1/2. The initial state of the particle (up to normalization) is

ψ+(z, 0) = e−z2/2(∆z)2 (| ↑〉 + | ↓〉) ,
where ∆z is large. It evolves in time T to a superposition of two waves:

ψ+(z, T ) = e−z2/2(∆z)2+iµBz/�| ↑〉 + e−z2/2(∆z)2−iµBz/�| ↓〉 .
The superposed waves separate for t > T . How do we know, in our restricted theory, that the
relative phase between the two terms in ψ+(z, T ) is + and not − as in the orthogonal state

ψ−(z, T ) = e−z2/2(∆z)2+iµBz/�| ↑〉 − e−z2/2(∆z)2−iµBz/�| ↓〉 ?

The answer is that the rotation operator of Eq. (18.13), which depends on the modular angular
momentum (Lx + Sx) mod 2�, reveals the relative phase. For all t, the modular angular
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momentum of ψ+(z, t) equals �/2, while the modular angular momentum of ψ−(z, T ) equals
−�/2. Thus even this restricted theory, with its deterministic measurements, contains nonlocal
quantum phases!

As long as � is nonzero, the theory contains nonlocal quantum phases. In the limit � →
0, modular angular momentum becomes undefined; the limit of Eq. (18.13) is undefined.
No matter what boundary conditions we impose, modular angular momentum is completely
unknown in this limit. The limit, then, gives us a new way to look at �. The role of � is
not quantitative (to measure uncertainty) but qualitative: � shows which observables become
undefined in the classical limit.

18.5 Causality and Nonlocality as Axioms

Chapter 6 suggests two simple, physical axioms for quantum theory: relativistic causality and
nonlocality. Does quantum theory follow from just these two axioms? This question gets
us into a difficulty. The difficulty is that in nonrelativistic quantum mechanics, c cannot be
a bound on the speed of signalling. We could try to derive relativistic quantum mechanics
from these two axioms, but we get into another difficulty: relativistic quantum theory does not
correspond satisfactorily to what experiments can measure. (See Sect. 11.5 and Chap. 14.) It
makes more sense to try first to derive nonrelativistic quantum mechanics, as Chap. 6 suggests.
But if we take the c → ∞ limit of relativistic causality, we seem to be left with nothing – no
limit on the speed of signalling.

Actually, the nonrelativistic theory itself shows the way out of the difficulty. Nonlocal
quantum correlations are useless for signalling. (See Prob. 3.11.) Indeed, they must be useless
for signalling. Consider two systems entangled in their internal degrees of freedom. The
nonlocal correlations between the systems do not depend on their spatial separation; hence if
the correlations were useful for signalling, they would be useful for superluminal signalling,
too. So the causality constraint is more severe in the nonrelativistic limit: all signalling, not just
superluminal signalling, is forbidden. Of course, signalling via local interactions (e.g. causal
propagation of a field) is allowed, but signalling via any nonlocal interactions is forbidden. We
can therefore reformulate the two axioms of Chap. 6 as follows:

i) Any nonlocal interactions are useless for signalling.

ii) Some interactions are nonlocal.

We must still define nonlocal interactions. What nonlocal interactions fit the second axiom
best: Nonlocal correlations? Nonlocal equations of motion?

Suppose first that nonlocality means nonlocal correlations. Local correlations obey the
CHSH inequality, Eq. (3.12). Namely, the sum of correlations

SCHSH(A,A′;B,B′) = C(A,B) + C(A′, B) + C(A,B′) − C(A′, B′)

satisfies |SCHSH(A,A′;B,B′)| ≤ 2 if the correlations C(A,B), etc. are local. The sum can
be as large as 2

√
2 if the correlations are quantum correlations [10]. Yet arbitrary correlations

could yield a sum |SCHSH(A,A′;B,B′)| as large as 4. Why does quantum mechanics limit
the sum to 2

√
2? Let’s make a conjecture: the only way that |SCHSH(A,A′;B,B′)| can
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exceed 2
√

2 is if the correlations violate causality. This conjecture, if true, would allow us
to derive at least a part of quantum mechanics. We could deduce that, in order to satisfy the
axiom of nonlocality (in the sense of nonlocal correlations), the sum |SCHSH(A,B;A′, B′)|
would have to exceed 2 for someA,B,A′ andB′; but in order to satisfy the axiom of causality,
|SCHSH(A,A′;B,B′)| could not exceed 2

√
2. But a simple counterexample disproves the

conjecture [11]. (See Prob. 18.5.) Deriving the 2
√

2 limit from causality requires additional
axioms [12].

Suppose now that nonlocality means nonlocal equations of motion. Are quantum equations
of motion the only nonlocal equations of motion consistent with relativistic causality? Here,
too, there is a counterexample, called jamming. In jamming, Alice and Bob jointly measure
nonlocal correlations between two spacetime points a and b, respectively. But Jim (the jammer)
can act at a spacetime point j to change their nonlocal correlations into local correlations.
Jamming is nonlocal, but it is consistent with relativistic causality if a, b and j obey certain
conditions [13]. (See Prob. 18.6.) So quantum mechanics is not the only theory combining
causality with action at a distance.

Still, we continue the search for simple, physical axioms for quantum mechanics. So far
we have discussed nonlocality in space. Bohm’s theory of hidden variables, for example,
is nonlocal across the spacelike separation between Bob’s measurements and Alice’s; the
variables must be hidden to obey causality. The next section postulates a special form of action
at a distance as the axiom of nonlocality. However, the final boundary conditions of Sect. 18.3
are hidden variables that are nonlocal in time. Section 18.3 shows that these nonlocal variables,
as well, obey causality only if they are hidden. How does a theory combine causality with
nonlocality in time?

Section 16.2 presents a thought experiment in which weak measurements of the kinetic
energy of a particle consistently yield negative values. The thought experiment includes a final
boundary condition – postselection of the particle far from the potential well in which it is
initially bound. Instead of a postselection, we can follow the weak measurement of kinetic
energy with a new and more precise measurement of kinetic energy (as Salviati points out in
Sect. 16.8). If we do, the measured values are very likely to be positive. The fact that we may
conclude the experiment with either a postselection or a new measurement of kinetic energy
implies that there must be uncertainty in the measuring device and the measured system. That
is, suppose the measuring device does not introduce uncertainty into the measured values.
Then the scatter in (positive and negative) measured values must arise from uncertainty in the
measured system. But even if the measuring device introduces uncertainty, there must also be
uncertainty in the measured system. Otherwise, postselection on the measured system could
not change the distribution of values measured by the device. Thus nonlocality in time implies
fundamental uncertainty.

This derivation of uncertainty is qualitative, but a quantitative derivation may be possible as
well. How much uncertainty is needed for nonlocality in time to be consistent with causality?
The question remains open. We see again, however, that the positive in quantum mechanics
hides behind the negative. Quantum uncertainty is not pointless “playing with dice”, as Einstein
put it; quantum uncertainty is the necessary and sufficient condition for time symmetry and
causality to coexist.
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18.6 Causality, Nonlocality and Scaling

Section 6.1 describes a piston in a long, closed cylinder with a particle in it. A little ball
collides twice with the piston from the outside, pushing the piston inward. According to
classical mechanics, only if the particle inside hits the piston does the ball affect it. But
according to quantum mechanics, the ball affects the particle, even when there is no explicit
interaction between them: it changes the modular energy of the particle. The particle does
not, however, affect the ball. For our axiom of nonlocality, let us construct a model with the
same nonlocal interaction. Let us assume that the ball changes the probability distribution of
the energy of the particle, although there is no explicit interaction between the ball and the
particle; we do not assume anything about how the distribution changes, just that it changes.
The probability distribution of the energy of the ball, however, does not change.

According to our axiom of causality, the nonlocal interaction must be useless for signalling.
But if the ball can affect the particle, why can’t two observers, Alice and Bob, use it to send
signals? If Bob, standing near the piston, scatters a ball off the piston, can’t Alice, standing at
the other end of the cylinder, observe a change in the probability distribution of the energy of
the particle? Section 6.4 hints how to avoid a violation of causality: the axioms are compatible
if and only if uncertainty keeps Alice from detecting the effect of the ball on the particle.

Let us apply a mathematical statement proved in Sect. 6.3. Let ρb and ρp denote the
probability distributions for the energies of the ball and the particle, respectively, and ρbp the
probability distribution for their total energy. The distribution of total energy is a convolution
of ρb and ρp:

ρbp(E) =
∫
ρp(E − E′)ρb(E′)dE′ . (18.14)

We assume conservation of total energy, hence ρbp(E) never changes. We also assume that
the ball affects ρp(E −E′) without the particle affecting ρb(E′), so ρp(E′) is the only energy
distribution that changes. The same must be true of the Fourier transforms of these distributions:
ρ̃p(t) changes, but not ρ̃bp(t) or ρ̃b(t). From the Fourier transform of Eq. (18.14),

ρ̃bp(t) = ρ̃p(t)ρ̃b(t) , (18.15)

we see that for ρ̃p(t) alone to change, without any change in ρ̃b(t) and ρ̃bp(t), both ρ̃b(t) and
ρ̃bp(t) must vanish over some interval in t. From Eq. (18.15) we then conclude, first, that the
ball changes the modular energy of the particle (since the Fourier transform ρ̃p(t) represents the
distribution of modular energy); and second, that the modular energy of the ball is completely
unknown (since the Fourier transform ρ̃b(t) vanishes). If the modular energy of the ball is
completely unknown, the change in modular energy of the particle does not correspond to any
measurable change in the modular energy of the ball. Then the ball can affect the particle
without the particle affecting the ball.

In quantum mechanics, the t in ρ̃p(t), ρ̃b(t) and ρ̃bp(t) necessarily represents time. (See
Eq. 6.10.) Here t has (so far) nothing to do with time. Can we deduce that t represents time?

We need an additional axiom. Ideally, we would like an axiom that connects energy and
time and holds both in classical and quantum mechanics. We note the following: Let H be
a Hamiltonian for a system and O be any dynamical variable of the system. If we scale the
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Hamiltonian by a factor λ, so that H → λH , then – whether the equation of motion for O
follows from a Poisson bracket or a commutator – the corresponding scaling for dO/dt is
dO/dt → λdO/dt. Let this be our third axiom: for any system, time derivatives of dynamical
variables scale the same way as the Hamiltonian.

As an application of this axiom, let us compare two cases. In the first case, the probability
distribution of the ball is ρb(E). In the second case, the probability distribution is ρ′

b(E), scaled
by a factor λ relative to the first case:4

ρ′
b(E) =

1
λ
ρb (E/λ) . (18.16)

If, in the first case, the time between the two collisions of the ball with the piston is T , what
is the time between the two collisions in the second case? In the second case it is T ′ = T/λ,
because the time evolution is faster by a factor λ.

Now let us compare the Fourier transforms of these probability distributions. The Fourier
transform of ρb(E) is

ρ̃b(t) = (2π)−1/2
∫
ρb(E)eiEtdE .

The Fourier transform 0of ρ′
b(E) is

ρ̃′
b(t) = (2π)−1/2

∫
ρ′
b(E)eiEtdE

= (2π)−1/2
∫
ρb(E/λ)ei(E/λ)λt/kdE/λ

= ρ̃b(λt) . (18.17)

What does Eq. (18.17) tell us? It tells us how to compare modular energy scales. The scale
for ρ̃′

b(t) is compressed by a factor λ compared to the scale for ρ̃b(t). In particular, suppose
that ρ̃b(t) vanishes for all t > t0. Equation (18.17) then implies that ρ̃′

b(t) vanishes for all
t > t0/λ. In terms of modular energy, if in the case of ρb(E) the modular energy E mod E0
is completely uncertain for all E0 < 2π/t0, then in the case of ρ′

b(E) the modular energy E
mod E0 is completely uncertain for all E0 < 2πλ/t0 = 2π(T/t0)/T ′ (since λ = T/T ′). If
we fix T and define a constant k = T/t0, then the modular energy E mod E0 is completely
uncertain for all E0 < 2πk/T ′.

We thus obtain an uncertainty relation for energy and time. For ifE modE0 is completely
uncertain, then the uncertainty ∆E in energy cannot be less than E0. Thus the minimum
uncertainty in the energy is related to the time T ′ between the two collisions of the ball by
∆E ≥ 2πk/T ′, or

T ′∆E ≥ 2πk . (18.18)

Equation (18.18) has the form of the uncertainty relation for energy and time in quantum
theory. (See Sects. 8.1 and 8.5.) But is the constant k universal? This question takes us back
to Sects. 2.3–4 and the Bohr-Einstein debate. It might seem that Eq. (18.18) holds only when

4The normalization is the same:
∫
ρ′

b(E)dE =
∫
ρb(E)dE.
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the energy distribution of the ball has the special form ρ′
b(E), defined in Eq. (18.16), for some

value of λ. But Eq. (18.18) is a consequence of the axiom of causality: it prevents signalling
between systems that do not interact locally. It must therefore hold for all possible energy
distributions of the ball; otherwise we could defeat the axiom of causality, as it applies to
one distribution, with another distribution. The Bohr-Einstein debate shows that uncertainty
relations hold consistently only if they hold universally. The theory that follows from our three
axioms can be consistent only if the constant k is the same for all energy distributions. Since
the ball could arrive at the piston after colliding with any other system, the constant k in the
uncertainty relation Eq. (18.18) must be universal, and we can identify k with �. Our three
axioms thus imply at least a part of quantum theory.

18.7 What is the Quantum World?

The title of this chapter is “The Quantum World”. If Bohr could have reviewed the book,
he might [14] (or might not [15]) have objected, “There is no quantum world. There is only
an abstract quantum physical description.” There is no quantum world independent of our
measurements.

But – to paraphrase Maslow [16] – if our only tool is a hammer, we tend to treat everything
as if it were a nail. If our only tool were a hammer, not even the classical world would be
independent of our measurements. This book proposes measurements that do not hammer at
the quantum world, and claims that the quantum world is independent of them. Let us briefly
review these measurements.

If a system is in an eigenstate |ψ〉 of an observable A, a measurement of A on the sys-
tem yields an eigenvalue of A and the measurement does not disturb the measured system.
Section 18.4 makes the most of such measurements by defining the set of all observables Aψ
having |ψ〉 as an eigenstate, and considering measurements of theAψ only. If we measure only
eigenoperators of |ψ〉, there is no uncertainty in our measurements and we never disturb the
measured system. We might expect that nothing quantum could come out of these measure-
ments. Yet among the operators Aψ are modular variables; as Chaps. 5 and 6 show, modular
variables represent nonlocal quantum phases. In the limit � → 0 modular variables are com-
pletely undefined. Hence the classical limit � → 0 is not a limit in which all observables are
well defined, although conjugate variables are well defined. For � = 0, conjugate variables do
not commute but modular variables are well defined; and measurements of modular variables
exhibit quantum nonlocality, part of the quantum world that other measurements miss.

If |ψ〉 is not an eigenstate of an operatorA, we can still measureA in a protective measure-
ment. In such a measurement, the coupling betweenA and the measured system is weak and |ψ〉
is protected from any disturbance due to this weak coupling. The protection may, for example,
consist of many measurements of |ψ〉〈ψ| during the measurement of A. As Sect. 15.3 shows,
the measurement yields 〈ψ|A|ψ〉, the average ofAmeasured on an ensemble of systems in the
state |ψ〉. Indeed, a protective measurement on a single system yields 〈ψ|A|ψ〉. The operator
A is arbitrary; hence we can measure every relevant observable on a single system. Quantum
theory is not merely a set of rules for calculating probabilities. Protective measurements show
that the magnitude and phase of quantum waves, and expectation values such as 〈ψ|A|ψ〉 and
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|〈a|b〉|2 (i.e. the expectation value of |b〉〈b| in the state |a〉) have physical meaning independent
of probabilities.

Weak measurements generalize protective measurements. In weak measurements, the
coupling is weak; but a weak measurement of A involves preselection of a state |ψin〉 and
postselection of a state |ψfin〉. These states define a pre- and postselected (PPS) ensemble,
and the measured value, the weak value 〈A〉w, has the form 〈ψfin|A|ψin〉/〈ψfin|ψin〉. Weak
values lead us to reinterpret the role of time in quantum mechanics. For if a weak value
describes a quantum system between two times, then the future of a quantum system must
contain information about its present that is not available in its past. We come to describe
quantum systems via two states, one evolving forwards from the past and the other evolving
backwards from the future, as in Sect. 18.3.

The time symmetry in this new formalism is elegant, but it is not only elegant: time
symmetry is crucial for the definition of the quantum world. It is time symmetry that allows
us to couple a measuring device to an independent quantum system, as the “quantum walk” of
Sect. 16.6 shows. During a weak measurement, the measured system and measuring device
evolve together to a highly entangled state, Eq. (16.21). Without postselection there is no way to
disentangle the entanglement of the measured system and measuring device, hence no quantum
world. With postselection, however, the measuring device measures a single value – the weak
value – that depends only on the measured system and not on the measuring device. (See
Eqs. (16.22–24).) With postselection, there is no superposition of pointer positions; there is
no need to monitor quantum phases in the measuring device. The measuring device decouples
from the measured system, and we can, with Bohr, treat it as classical.

•
Such is the world to which quantum paradoxes have led us. And after all, we look forward

to an application: may this book inspire readers to confront paradox creatively, “to think for
themselves, to unmask false arguments and ambiguous phrases” [17] in the world, and to grasp
the world more fully by grasping it gently.

Problems
∗18.1 (a) Define a state |ψ〉 of a two-level system

|ψ〉 = c1|1〉 + c2|2〉
where 〈i|j〉 = δij . Let A be the operator |1〉〈1| − |2〉〈2|. Compute the expectation
value 〈A〉 and the uncertainty ∆A = [〈A2〉 − 〈A〉2]1/2 of A in the state |ψ〉 and show
that

A|ψ〉 = 〈A〉|ψ〉 + ∆A|ψ⊥〉 ,
where 〈ψ|ψ⊥〉 = 0. Write down |ψ⊥〉 explicitly.
(b) Let |Ψin〉 be an initial product state of N identical systems prepared in the state
|ψ〉:

|Ψin〉 =
N⊗
i=1

|ψ〉i .
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Consider a weak measurement of Ā =
∑
iA

(i)/N on this initial state (where A(i)

represents the operatorA on the i-th system) assuming that the time evolution operator
for the systems, over the duration of the measurement, is e−iPdĀ/�. (As usual, Pd is
conjugate to the positionQd of the pointer on a measuring device.) Show that the state
of the systems immediately after the weak measurement, up to terms of order 1/N2,
is

[
cos

Pd
�N

− i〈A〉 sin
Pd
�N

]N
|Ψin〉 − i(∆A) sin

Pd
�N

N∑
i=1

|Ψ⊥
i 〉 , (18.19)

where |Ψ⊥
i 〉 represents the i-th system in the state |ψ⊥〉 and all the other systems in

the state |ψ〉.
(c) Now assume that, immediately following the weak measurement, an exact mea-
surement of A on each system yields N1 of the systems in the state |1〉 and N2 in
the state |2〉. Show that if N1 = N or N2 = N , then all the terms in the sum in
Eq. (18.19) add constructively and the time evolution operator moves the pointer by 1
or -1, respectively. Show that the terms in the sum cancel out in the limit N → ∞ if
and only if N1/N = c∗1c1 in the same limit.

18.2 Consider an ensemble of N identical systems in the pre- and postselected states

|Ψin〉 = | ↑〉 , |Ψfin〉 =
1√
2
(| ↑〉 + | ↓〉) .

The Hamiltonian of these systems does not depend on spin. On each system in this
PPS ensemble we measure the operator

n · σ =
(

cos θ e−iφ sin θ
eiφ sin θ − cos θ

)
,

each time choosing the unit vector n at random. In the limitN → ∞, what probability
distribution describes these measurements? Show that the probability of obtaining spin
parallel to n is not cos2(θ/2) (as it would be without postselection) but

cos2(θ/2)
1 + cosφ sin θ

1 + cosφ sin θ cos θ
.

18.3 Let |ψ〉 be a state in an n-dimensional complex vector space with n > 2. Show that
every Hermitian eigenoperator Aψ of |ψ〉 is a real linear combination of (n− 1)2 + 1
linearly independent operators, and find an explicit representation for the (n− 1)2 +1
operators. Show that the set of all these eigenoperators of |ψ〉 uniquely defines |ψ〉.
Why is n = 2 a special case?

18.4 Consider two lines in the xy-plane, parallel to the x-axis. One line (the “high road”)
has y = L, while the other (the “low road”) has y = −L. Two particles,A andB, move
along these lines, in the direction of increasing x. On the y-axis, at the points (0, L)
and (0,−L), sit two two-state “atoms”. (See Fig. 18.2.) Let | ↑〉+ and | ↓〉+ denote
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x

y

0

-L

L

Figure 18.2: The “high road” passes through a two-
state “atom” at (0, L), and the “low road” passes
through a two-state “atom” at (0,−L), in the thought
experiment of Prob. 18.4.

states of the atom at (0, L) and | ↑〉− and | ↓〉− denote states of the atom at (0,−L).
(The atoms really have zero angular momentum, but this notation is convenient.) If
particle A encounters one of these two-state atoms, it acts upon it as σz (multiplies
| ↓〉+ or | ↓〉− by -1); if particle B encounters one of the atoms, it acts upon it as σx
(interchanges | ↑〉+ and | ↓〉+ or | ↑〉− and | ↓〉−).
(a) Suppose the initial states of particlesA andB are [|+〉A + |−〉A]/

√
2 and [|+〉B +

|−〉B ]/
√

2, respectively, where |+〉 denotes the high road and |−〉 denotes the low
road; the initial state of the atoms is [| ↑〉+ ⊗ | ↑〉− +| ↓〉+ ⊗ | ↓〉−]/

√
2. Show that

the final state of the atoms is [| ↑〉+ ⊗ | ↓〉− −| ↓〉+ ⊗ | ↑〉−]/
√

2, but the final state of
particles A and B depends on which particle first encounters the atoms.
(b) Show that the atoms and the trailing particle exchangeLx mod 2� (modular angular
momentum) nonlocally. (The operator eiLxπ/� interchanges |+〉A and |−〉A, |+〉B and
|−〉B , | ↑〉+ and | ↑〉−, and | ↓〉+ and | ↓〉−.)
(c) Assume that the initial states of particlesA andB are |+〉A and |−〉B , respectively,
so the order in which the particles arrive at the atoms is not Lorentz-invariant. How can
the atoms and the trailing particle exchange modular angular momentum nonlocally,
when the trailing particle is different in different Lorentz frames? Resolve this paradox.

18.5 In an experiment to test Bell’s inequality, Alice and Bob share pairs of spin-1/2 particles;
Alice measures either a · σ or a′ · σ on her particles while Bob measures either b · σ
or b′ · σ on his, where a, a′, b and b′ are unit vectors in space. (See Sect. 3.4.) For
pairs in a singlet state, the quantum correlation between a measurement of a · σ by
Alice and b · σ by Bob isCQ(a,b) = −a · b. Consider a “superquantum” correlation
CSQ(a,b) for pairs of spin-1/2 particles such that

CSQ(a,b) = −sgn(a · b) ;

the measured correlations (and probabilities) depend only on the sign of a · b.
(a) Show that CSQ(a,b) is consistent with relativistic causality and that a suitable
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choice of a, a′, b and b′ yields

|CSQ(a,b) + CSQ(a′,b) + CSQ(a,b′) − CSQ(a′,b′)| = 4 . (18.20)

(b) Find a superquantum correlation CSQ(a,b) that is continuous and differentiable
for all a and b, consistent with relativistic causality, and yields Eq. (18.20) for a suitable
choice of a, a′, b and b′.

18.6 Assume that in the absence of jamming, correlations measured jointly at spacetime
points a and b are the correlations of a singlet state of two spin-1/2 particles

(| ↑〉A ⊗ | ↓〉B − | ↓〉A ⊗ | ↑〉B)/
√

2 ;

but the effect of jamming at the spacetime point j is to turn these correlations into the
correlations of an equal mixture of the states | ↑〉A ⊗ | ↑〉B and | ↓〉A ⊗ | ↓〉B . Show
that jamming is consistent with relativistic causality if and only if the intersection of
the forward light cones of a and b lies entirely within the forward light cone of j.

18.7 Find a generalized density matrix ρ(t) with the following property: tr [ρ(t)A] is the
weak value of A at time t, for any observable A of a system preselected in the state
|Ψin〉 at time tin and postselected in the state |Ψfin〉 at time tfin. (See Prob. 9.6.)
Show that ρ(t) evolves in time as an ordinary density matrix:

ρ(t′) = U(t′ − t)ρ(t)U†(t′ − t) ,

where U(t′ − t) evolves the system over a time t′ − t. (Assume that the Hamiltonian
of the system does not depend on time.)

∗18.8 Consider a measurement sequence in four steps. The first step is preselection of the
state

|Ψin〉 =
N⊗
n=1

| ↑〉n + | ↓〉n√
2

.

The second step is a measurement interaction of the form

�P
N∑
n=1

(−1)n
1 − σ

(n)
z

2
,

i.e. the unitary operator

U = e−iP ∑
n(−1)n[1−σ(n)

z ]/2

acting on |Ψin〉. The third step is a measurement of
∑
n σ

(n)
x /N , corresponding to the

unitary operator

Ud = e−(i/�)g0Pd

∑
n σ

(n)
x /N .
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For large N this measurement is naturally weak. The fourth step is postselection of
the state

|Ψfin〉 =
N⊗
n=1

| ↑〉n .

Assume P and Pd are conjugate to pointer positions Q and Qd, respectively. The
pre- and postselected states could represent N spins; they could also represent N
particles passing through a screen with two slits, as in Fig. 16.1. If they represent
particles passing through a screen, these measurements recall the two-slit experiment
of Sect. 18.1. In either case, the first, third and fourth steps alone define a weak
measurement on a PPS ensemble, with the weak value of

∑
n σ

(n)
z /N exhibiting the

interference between | ↑〉n and | ↓〉n in |Ψin〉 even though there is no interference in
the postselected state |Ψfin〉. Is it a paradox that we can exhibit interference without
interference in the final state? We know that weak values depend on both the preselected
state and the postselected state. (See Sect. 16.6.) Yet this measurement sequence,
including all four steps, leads to a paradox.
(a) Show that

〈Ψfin|UdU |Ψin〉 = e−(i/�)g0Pd cosP

exactly in the limit N → ∞.
(b) Let Φd(Qd)Φ(Q) be the initial state of the pointers, with Φd(Qd) =
(ε2π)−1/4e−Q2

d/2ε
2
. Suppose first that Φ(Q) is an eigenstate of P . That is, U is

not a measurement but an operation that changes the relative phase between | ↑〉n and
| ↓〉n in the preselected state |Ψin〉. The pointer Qd measures this change in relative
phase; it moves by g0 cosP . For example, if P = π, then U changes the relative
sign between | ↑〉n and | ↓〉n from + to −, and Qd moves by −g0 instead of g0. The
effect of U is paradoxical, because 〈Ψfin|U = 〈Ψfin|. It is true Ud comes between
〈Ψfin| and U , but Ud represents a weak measurement; it should not affect the final
state. Show, indeed, that 〈Ψfin|Ud|Ψfin〉 = 1 in the limit N → ∞; there are no spin
flips | ↑〉n ↔ | ↓〉n in this limit.
(c) But for this PPS ensemble, the relevant calculation is not 〈Ψfin|Ud|Ψfin〉 but
〈Ψfin|Ud|Ψin〉. Show that if |Ψin〉 were a typical state in which about half the spins
pointed up, and about half down, the x-axis, then 2N/2〈Ψfin|Ud|Ψin〉 would equal 1
in the limit N → ∞; but |Ψin〉 is not a typical state and 2N/2〈Ψfin|Ud|Ψin〉 equals
e−ig0Pd/�.
(d) Calculate 〈Ψfin|Ud|Ψin〉 as a power series in g0 by expanding the exponential in
Ud. In this power series, terms of k-th order typically represent k spin flips between
|Ψin〉 and |Ψfin〉. For each k, estimate the contribution of all terms of k-th order.
(Approximate k! ≈ kk, etc.) Show that in the limit N → ∞, the largest contribution
comes from terms of order k ≈ g0. Thus in the limit N → ∞, the fraction of spins
flipped vanishes but the number does not. If | ↑〉n and | ↓〉n represent states of a
particle passing through a screen with two slits, the weak measurement changes the
final direction of approximately g0Pd/� of the particles.
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(e) Suppose now that U is a measurement; let Φ(Q) be a gaussian state in which the
expectation value ofP vanishes, and ∆P is small. ThenU does not change the relative
phases in |Ψin〉, and during theUd measurement,Qd moves by g0 (to order ∆P ). Show
that Q does not move at all, but the uncertainty in Q increases from ∆Q in the initial
state to [(∆Q)2 + �

2(g0∆Pd)2/4(∆Q)2]1/2 ≥ √
�g0∆Pd. Show that the uncertainty

in the measured value of P due to the uncertainty in Qd is approximately
√

∆Qd/g0.
Thus the Ud measurement decreases the uncertainty in P , but the uncertainty in Q
increases such that the product of the uncertainties is not less than �/2.
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